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This paper presents an evaluation of the cable loading

support capacity of red alder, Alnus rubra Bong., Sitka

spruce, Picea sitchensis (Bong.) Carr, and western hemlock,

Tsuga heterophylla (Raf.) Sarg., tail trees. Capacity is

measured in terms of combined stress resulting from

compression and bending, rather than the traditional methods

of buckling or compressive stress alone.

Results from field tests to determine modLili of

elasticity, base stiffness values, and functions for moment

of inertia are presented to provide strength properties for

capacity analysis.

A two dimensional model with one guyline is used to

calculate the combined stress at points along the trees. In

addition to strength properties of each species, model

inputs include front and rear skyline angles, rigging
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height, and the following guyline parameters: angle,

metallic area, unit weight, modulus of elasticity, and lower

end pretension.

The control calculations for each species are made with

the guyline angle equal to a rear skyline angle of 45

degrees. A
3/411 guyline with 100 pounds of pretension is

used, and the skyline and guyline are placed at a height of

30 feet, Given these conditions, it was found that a

skyline angle of about 15 degr.ees below horizontal maximized

combined stress per pound of skyline tension in alder and

spruce. An angle of about 10 degrees below horizontal was

found to maximize stress in hemlock per pound of skyline

tension.

Figures are presented which show that skyline tension

to a given level of stress may be a function of tree

diameter, if other variables are held constant.

Values for maximum allowable combined stress for each

species are set by adjusting published average values

downward. Calculations for 16 inch (diameter inside bark)

trees indicate that hemlock is able to withstand the

greatest skyline tension of the three species before

reaching its allowable stress, with alder and spruce

following in descending order.

A comparison is made between a 14 inch DIB Douglas-fir,

Pseudotsuga menziesii (Mirb. ) Franco, and a 16 inch DIB

alder, spruce and hemlock. Calculations indicate the



hemlock can withstand about 9% more skyline tension to its

allowable stress than the Douglas-fir. An alder slightly

over 17 inches DIB would be needed to support the same

tension, and a spruce with a DIB over 18 inches, which is

outside the range of field data, would be needed.
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I. INTRODUCTION

Concern for logging impacts on soil and water quality,

and economics often necessitates the use of tail trees in

cable logging to provide sufficient lift to a turn of logs.
Internediate supports are sometimes also needed to meet

suspension requireirients. Figure 1 illustrates the use of
a tail tree and a double tree intermediate support.

The Logging Division of the Oregon Occupational Safety

and Health Code, Appendix 80-K (1984) contains a table of
recommended minimuiri diameters for west coast Douglas-fir,
Pseudotsuà menziesii (Mirb.) Franco, tail trees. Appendix

80-J contains a sinilar table for double-tree intermediate
support systems. Two blanket recommendations are made for

non-Douglas-fir species:

1, add two inches to recommended dianeters for

Douglas-fir tail trees if using another conifer
species, and

2. reduce recomnended Douglas-fir intermediate

support loads by 25% when using other conifer

species.

Both tables address the use of conifer species;

however, conifers are not always located where a support is

needed. Along the Coast Range of Oregon, red alder, Alnus

rubra Bong., Sitka spruce, Picea sitchensis (Bong.) Carr,
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and western hemlock, Tsua heterophylla (Raf. ) Sarg. , are

very common species and many times are major components in

a harvest unit. Until now, the load bearing capacity of

these species has not been quantified.

If we look at a simplified side view of a tail tree

rigging configuration (Figure 2a), and assume that the

horizontal component of the skyline tension is offset by

guylines (which are required in Oregon), then the major

force of concern, with respect to failure, is the vertical

(axial) component of the load (Pv):

As summarized by Pyles (1984), a tree subjected to

axial compression (load Pv) to the point of failure can

behave in one of three ways:

It can fail in direct compression if the

compressive strength of the fibers is

exceeded.

It can fail by exceeding the combined

bending and compressive strength of the

fibers when in a stable, elastic, deflected

shape, or

It can fail catastrophically by becoming

unstable and buckling.



Figure 2. Simplified Tail Tree with Cable Forces
Assuming no delection occurs under loading
assuming lateral deflection does occur
under loading

4
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If we assume that some lateral deflection of the top

of the tree takes place, as shown in Figure 2b, then a

combination of axial and flexural stresses will lead to

failure. Pyles (1984) states this mode of failure (bending)

is more likely to occur in cable support trees than a

buckling failure.

This paper will concentrate on bending as the mode of

failure. Comparisons with buckling as the mode of failure

will also be made.



II. OBJECTIVES AND SCOPE

To determine the load bearing capacity of tail trees

in terms of combined axial and bending stresses, solutions

will be needed for the following relationship between

bending moment and deflection for an elastic curve:

d2y M

dx2 E I

where:

y = lateral deflection of the tree, inches

x = vertical position along the tree, inches

M = bending moment, inch - pounds

E = modulus of elasticity, psi

I = moment of inertia, inches4

0 = column diameter, inches

The Wood Handbook (1974) contains values for modulus

of elasticity, E, for many species, including red alder,

Sitka spruce and western hemlock. However, the values are

determined from tests on small, clear, straight-grained

specimens.

The first objective of this study was to determine if

the Wood Handbook values for modulus of elasticity could be

used in predicting allowable cable loadings for support

trees.

6

(1)
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The moment of inertia, I, for a column of constant

circular cross-section is easily calculated; however, trees

have a varying cross-section due to taper, so the second

objective of this study was to determine mathematical

relationships for moment of inertia as a function of height

for all three species.

One requirement for a solution to EQ (1) is a set of

known boundary conditions. The necessary boundary

condition at the base of the tree is that the moment at the

base of the tree be equal to the rotation of the base of

the tree times the base stiffness of the tree. The third

objective of this study was to determine values of base

stiffness for alder, spruce and hemlock.

Once the values for modulus of elasticity, base

stiffness, and moment of inertia were obtained, we would be

able to achieve the fourth objective of evaluating the

capacity of alder, spruce and hemlock support trees. This

would also allow comparison with Douglas-fir.

The scope of the analyses and results presented in this

paper is limited. A two dimensional tail tree model with

one guyline is used to calculate combined stress. All

calculations are assumed to be within the elastic limits of

the trees and cables. The effects of load eccentricity are

not included, nor are the effects of tree lean.



Summary of Objectives

1. Determine values for modulus of elasticity.

2 Develop relationships for moment of inertia as

functions of height.

3. Determine base stiffness values.

4 Evaluate the capacity of alder, spruce and hemlock

to support cable loadings.

5. Compare alder, spruce and hemlock support

capacities to Douglas-fir.

8



III. FIELD STUDY

A, Study Sites

Trees were studied in two areas, both on the Hebo

Ranger District, Siuslaw National Forest, in the Coast

Range of northwest Oregon.

The alder site was at about 1500 feet elevation on the

west side of Mt. Hebo. Most of Mt. Hebo burned in the

early 1900's, and large tracts of alder are present.

Six alder trees were studied in a small flat about 1/2

acre in size, located at the base of a smll ridge. The

trees were located on a well-drained area, although a wet

depression was located within 70 feet of tested trees.

Diameters at breast height ranged from 14.2k to 26.5',

and all trees were about 100 feet tall.

Trees were chosen to obtain a good range in diameters,

and have the outward appearance of soundness. However, the

trees were not perfect. They all had some lean, ranging

from 0.29° to 7.61° (0.5% to 13.4%) from vertical.

Tree 2, which was the largest alder tested, had a fork

at the base, with a secondary bole 10" in diameter

extending to about 70 feet in height, and Tree 6 had an old

wound in its base, in addition to a more recent wound which

appeared to have been caused during road construction.



The study was conducted from June 18 to July 5, 1984,

and weather conditions ranged from sunny and warm to steady

downpour.

The hemlock/spruce study area was located within the

Cascade Head Experimental Forest, just north of Lincoln

City, Oregon. Four hemlock ranging from 8.9 to 20 inches

DBH, and four spruce with diameters from 11.1 to 19.2

inches were studied. Spruce heights ranged from 35 to 119

feet, and hemlock ranged from 60 to 115 feet.

These trees were more spatially separated than the

alder, and all were located on well-drained sites. They

were tested from July 9 to July 27, 1984. The weather was

mostly clear and sunny.

These trees also had some lean. Hemlock lean ranged

from 0 to 2.3 (4%), and spruce ranged from 0.7° to 3.8

(1% to 7%) from the vertical.

B. Study Methods

Figure 3 shows the basic rigging configuration that

was used to obtain the needed data.

Survey targets were placed at 5-foot intervals

beginning at 5 feet. The highest pull heights were 32.5

feet for Alder #2, 35 feet for Hemlock #4, and 30 feet for

Spruce #3. All the alder forked a few feet beyond the

heights at which they were rigged. For safety and practical

considerations, we did not go beyond the forks.

10
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Diameters and bark thickness were measured at each

target point on the alder and spruce to determine the

functions for moment of inertia. Outside diameter only was

measured on the hemlock, and a regression equation (Stuck

1974) was used to determine inside bark diameters.

The load line was placed at a height on the pull tree

such that the pull direction was horizontal.

The load was applied to the alder with a Skagit B20F

drum set, and was applied to the spruce and hemlock with a

hand winch. The load was measured using an electric load

cell with a rated capacity of 10,000 pounds. The load

sensing element was a four-arm resistive strain gage

bridge. Bridge excitation and signal reading was done with

a Baldwin-Ljma-Hamjlton model 120 strain indicator. Using

the model 120 strain indicator, the maximum theoretical

resolution of the load cell was 10 pounds. Repeated

readings at constant load however, show that the measurinc

system was only accurate to about 30 pounds.

At least three loads were applied to each tree, in

each of three directions.

As previously mentioned, virtually all the trees had

some lean. To determine the effects of lean, if any, on

the structural properties, a set of three loads was applied

in the direction of lean, a set against the lean, and a set

at a right angle to the lean (not in any particular order).

12



Lateral deflections of the survey targets were

measured with a Wild T-2 theodolite. Unloaded readings were

recorded for each target while the load line was slack. A

load would then be applied and held constant while the

loaded deflection angles were recorded. The difference

between the readings was the total deflection at a given

height and load, due to both bending and rotation at the

base. This data would be used in the modulus of elasticity

calculations.

A dumpy level was attached to the base of the test

tree as close to the ground as possible, its line of site

parallel to the pull direction. It was assumed that no

bending occurred at the base of the tree, so that the

difference between the loaded and unloaded level rod

readings was the amount of base rotation for a given load.

The base rotation data would be used both in the modulus

and base stiffness calculations.

We were also interested in the effect that load height

might have on base stiffness. After a tree had been pulled

in all three directions, the direction which had the most

rotation per foot-pound of applied moment, i.e. the weakest

direction, was determined. The load line was then moved

down the tree to a target approximately 3/4 of the original

load height, and three new loads were applied in the

weakest direction.

13



The largest of the new loads applied in the weakest

direction was designed to yield the same moment about the

base of the tree as the maximum load at the upper height

had. For example, let's assume the maximum load applied at

30 feet had been 1,500 pounds (a base moment of 45,000

foot-pounds). The load point would be moved down to 20

feet, about 3/4 of 30 feet, and three new loads would be

applied, the largest of which would be about 2,250 pounds,

which would yield a base moment of 45,000 pounds. The load

point would then be moved down to 10 feet and three

additional loads would be applied.

After each set of readings were taken, both at the

upper and lower load heights, the load line was slacked and

the unloaded theodolite and level rod readings were again

recorded.

A major objective in the testing was to apply loads

that would create deflections the instruments were capable

of measuring, but not to apply loads large enough to

displace the roots. In other words, we wanted to determine

the structural properties within the elastic range of

behavior.

Any significant difference between unloaded readings

before testing and unloaded readings after testing would

indicate the elastic limit had been exceeded.

14



IV. RESULTS

A. Moment of Inertia

Moment of inertia, I, as a function of height was

needed for the modulus of elasticity, bending and buckling

calculations. For solid circular columns,

4irD

64

Although trees are not perfectly circular, they were

assumed to be for the purposes of this project. Diameter (0)

was taken to be the inside bark diameter. It is assumed that

the bark does not significantly contribute to the

structural properties of a tree.

1. Alder Moment of Inertia

15

Figure 4 shows the plots of moment of inertia versus

height for alder, and it can be seen that alder does not

have uniform taper. Diameter measurements below 5 feet were

stopped when the diameter tape failed to make continuous

contact with the tree because of flutes.

Ideally, we would like to normalize the values for

moment of inertia, so that we could get a good idea about

its value at any height on a tree by making a single

measurement rather than having to make many measurements.



I (HT) (inch@s4)

Figure 4. Alder Moments of Inertia as a Function of Height

16



17

Pyles (1984) was able to normalize the moments of

inertia at given heights (Ih) on Douglas-fir by dividing the

values calculated from measured diameters for a given tree,

by the moment of inertia at 5 feet (15) for that tree. He

fit the values of the ratios to an equation of the form

Ih/15 = ahb. Then, by simply measuring a tree's diameter at

5 feet, calculating the moment of inertia (IS), and

rn'ltipying IS by ahb, a good estimate of the moment of

inertia (Ih) at any height h could be obtained.

Several methods were tried to normalize the values of

Ih for alder, but because of the wide variation in values,

no method could be found to adequately reduce the scatter.

However9 for the bending and buckling calculations, a

function for moment of inertia had to be developed. This is

because most methods used for calculating bending stresses

and buckling loads for tapered columns break them into many

segments, and values for moment of inertia are needed for

each of the segments.

What was needed, from the engineering standpoint, was a

conservative function--one that we were reasonably certain

would not overpredict resistance to bending.

It was decided that a function of the form Ih/15

f(height) would be the most practical because moment of

inertia at 5 feet (IS) can be readily determined. Figure 5
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displays the plots of Ih/15 versus height for the six alder.

The data lines for all trees pass through 1 at 5 feet

because 15/15 = 1.

Also plotted in Figure 5 are four curves; the

explanation of each follows. To graphically convey a picture

of how moment of inertia varies with height, height has been

plotted on the ordinate. It is pointed out that height is

the independent variable.

2 - this is the least squares regression line (point
estimator) of the mean response of Ih/15 given a
value of height. The R2 value is 0.82.

.95 CI - this is the lower 95% confidence interval (CI) for
the mean response (?) line. A transformation
(Appendix A) analogous to forcing a regression
line through the origin, was made to force the Y
and CI lines through the point (5,1). This was
desirable because:

physically, the line has to go through the
point, ie. 15/15 will always equal 1, and

moving the line to the left would cause an
unnecessary loss in moment of inertia in the
lower portion of the trees, with an
accompanying loss of bending resistance.

.95 P1 - this is the lower 95% prediction interval for an
individual outcome of Ih/15 given a value for
height. Note that this line does not go through
the point (5,1) as we know it should. A

statistically based method for forcing a
prediction line through a point was not found.

Since we wanted a function to determine new values for

Ih/15 given a value of height, a prediction line seemed in
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order. However, the method for determining its location did

not recognize the physical reality that Ih/15 will always

equal 1 when h = 5.

Therefore, we were faced with the choice of using an

accepted statistical nethod, based on probability, that did

not represent physical reality, or of using an alternative

method based on judgernent.

The fourth curve in Figure 5, labeled J is of identical

form as the .95 CI, except that the value of 8 was

substituted for the 95% t -value of 2.712 (2-tail, 38

degrees of freedom).

From 15 feet up, only 1 data point lies within the .95

P1 that is not within J. A total of 5 data points out of 39

(13%) fall outside the J line. It was felt this function

represented a conservative estimator of Ih/15 and met

physical reality, so it was used in the tail tree analysis.

While statistical tools were used to determine the

location of the J line, and as such it is a repeatable

process, no statistical significance can be attached to its

location. Its location is based on judgement.

2. Hemlock Moment of Inertia

Hemlock had more uniform taper than alder. For the

modulus calculations, power curves were fit to each tree

using the least squares method. Figure 6 displays the values

of Ih/15 for the four trees.
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As was done for alder, a mean regression line was fit

to the data through (5,1), with an R2 = 88. The lower 99%

expected value line (.99 CI) is also shown on Figure 6, and

is the function used in the tail tree analysis.

3. Sruce Moment of Inertia

The Ih/15 lines for spruce are plotted in Figure 7.

Tree 1, a 9.9", 15 foot tree, was dropped from the moment of

inertia analysis because of highly abnormal form. The mean

line (2) is shifted to the left side of the plotted data as

a result of forcing it through (5,1), and has an R2 of only

0.66. The R2 could be increased by not forcing the line

through (5,1), but this would yield a function not

representative of physical realities. The lower 99%

expected value line (.99 CI) was used in the tail tree

analysis.



I(HT)/I(5 ft)

Figure 7. Normalized Spruce Moments of Inertia and
Functions
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B. Modulus of Elasticity

The total lateral deflection measured for a given load

at a given height is the sum of two components:

the component due to rotation of the tree about

its base, and

the component due to bending of the tree.

To calculate the modulus of elasticity, it was

necessary to determine what portion of the lateral

deflection measured with the theodolite at a given target

height was due to the bendin9 of the tree.

By measuring the base rotation with the dumpy level,

the tree's rotation angle,
0c

was known. Multiplying the

tangent of by a given target's height (h) yielded the

amount of deflection at that height due to base rotation,

Subtracting this value from the total deflection

measured at the height, Y, yielded the amount of deflection

the point due to bending,
'c

These relationships are

illustrated jr Figure 8.

Pyles (1984) developed two methods for calculating

modulus of elasticity, both of which were used in this

study.

24



Figure 8. RelationshIp 8etween Rotation and Bending
Deflectjoris

Pyles, 1984
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The first method allows one to calculate the modulus

over segments of the test tree. This was the only method

used on the alder. The relationship is:

P (L-h) h (4.12, Pyles)
E=

ahb

where: E = modulus of elasticity, psi

P = the applied load, pounds

The divisor portion, ahb, represents a power function

fit to each tree for moment of inertia at height, h. Because

of the nonuniformity of taper, which caused wide variation

in moment of inertia, it was decided to obtain the values of

moment of inertia for the alder modulus calculations by

averaging the measured diameters over each section, and

using the relation I = D4164. Appendix B displays how the

variables in EQ. 4.12 are calculated for a tree section

after the deflection due to base rotation has been

subtracted.

The second method for calculating E is based on

integration, and would allow calculation of one modulus

value for a tree over its entire length. The relation is:

Lh'1 h(b+2)

26

E

P

-b1 -b2
(4.15, Pyles)



where: a,b = regression coefficients

from each tree's function for

moment of inertia at height h,

Ih = ahb

Because of the sensitivity of the deflection

measurements to small breezes, and because of the limited

number of trees sampled, it was decided that values of

modulus would be calculated over 10 foot segments with

EQ. 4.15, as was done with EQ. 4.12. Therefore, the

remaining variables are the same as defined in Appendix B

except that 8 = C
1 + 02)/2.

1. Alder Modulus

27

The Wood Handbook (1974) lists an average green wood

modulus value for red alder of 1,170,000 psi.

Calculated values for modulus varied greatly in this

study. One reason was that even slight breezes made it

difficult to accurately record deflections with the

theodol ite.

Extremely large values such as 20,000,000 psi, or

negative values for modulus were removed from the set of

calculated values as being unrealistic.

The average of all remaining calculated values for

alder modulus (114 in all) was 1,308,000 psi, with a

standard deviation of 955,000 psi (Table 1). The average is



TABLE 1. Alder Modulus of Elasticity (E) Results

Maximum Variation Coefficient
of E for Interval Sample Mean Standard of

Method and Direction Size Value(psi) Oeviation(psi) Variation

EQ 4.12 None 114 1,308,000 955,000 .73

50 52 1,051,000 500,000 48

3O 34 1,156,000 528,000 .46

Note: Wood Handbook (1974) average value for green alder, E =1,170,000 psi

28
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only 12% larger than the published average value of

1,170,000 psi, but the coefficient of variation (ratio of

standard deviation to the mean) is 73%, The Wood Handbook

(1974) lists an average coefficient of variation of 22% for

green wood from approximately 50 species. The alder's

coefficient of variation is so high because the 114 modulus

values ranged from 300,000 to 6,000,000 psi,

One could argue that a value for alder modulus of

6,000,000 psi is unreasonable, and throw it out, but this

involves judgment, which becomes more difficult to apply as

values approach the published value, Therefore, an impartial

method for selecting Hinu and uoutu modulus values to be

included in the average was desired.

Recall that three loads were applied to each tree in

each of three directions, allowing calculation of nine

values of modulus for each 5-foot segment. Because of out-

of-roundness of the trees, the moment of inertia, i.e.

resistance to bending, was probably different in different

directions. Therefore, we could expect differences in the

values of modulus calculated for the same tree segment,

depending on the direction pulled.

However, we should expect the values of modulus to be

approximately the same for three loads on the same segment

in the same direction. Large differences would indicate

measu rement errors.
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To eliminate modulus values with measurement errors,

the range from lowest value to highest value of modulus was

limited to a 50% difference for each segment and pull

direction. If the maximum value of modulus was more than 50%

greater than the minimum value for a given segment and

direction, then all values for that segment were eliminated

from the data set.

This reduced the number of "in" modulus values from 114

to 52 (Table 1). The resulting average value for modulus was

1,051,000 psi (10% less than the published value), with a

standard deviation of 500,000 psi. This reduced the

coefficient of variation from 73% to 48%, which is still

quite high.

The maximum range from low to high values was then

restricted to 30%, This reduced the number of "in" values to

34, with an average modulus of 1,156,000 psi, a standard

deviation of 528,000 psi, and a coefficient of variation of

46%.

Further screening of the calculated values would not

decrease the coefficient of variation. Shortly, we'll see

that the average values for .lder modulus had more variation

than hemlock or spruce. This is because alder is generally

a rougher tree in terms of cross section, which means more

variation in moment of inertia, hence more variation in the

caluclated modulus values,
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However, it appears the Wood Handbook's average modulus

value of 1,170,000 psi, which is essentially equal to the

final field value calculated, is a good value to use in the

bending and buckling calculations.

2. Hemlock Modulus

Since good relationships for Ih/15 for were developed

for hemlock, EQ. 4.15 could be used to calculate the modulus

values. To compare the methods, modulus values were also

calculated using EQ. 4.12. The results are summarized in

Table 2.

The Wood Handbook (1974) lists an average green wood

modulus for hemlock of 1,310,000 psi. In this case,

EQ. 4.15 yields larger values for modulus than EQ. 4.12, but

its values have less variation. The values calculated with

EQ. 412 fluctuated too much to go below the 20% limit on

van t ion.

An unpaired t-test was done on the mean values of

1,810,000 psi and 1,432,000 psi. The values are

significantly different at the .05 level,

We can't conclude that one method is better or yields

answers closer to the "true value for the tree's modulus,

but we can say that the published mean value of 1,310,000

psi appears to be conservative, and it will be used for the

hemlock modulus in the bending calculations.



TABLE 2. Hemlock Modulus of Elasticity (E) Results
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Note: Wood Handbook (1974) average value for green, western hemlock, E = 1,310,000 psi.

*These means are significantly different at the .05 level. Significance of the
difference between the other two pairs of means was not tested.

Method

Maximum Variation
of E for I'terval
and Direction

Sample
Size

Mean
Value(psi )

Standard
Deviation(psi )

Coefficient
of

Variation

EQ 4.15 30% 63 1,810,000 445,000 .25
EQ 4.12 30% 20 1,539,000 450,000 .29

EQ 4.15 20% 63 1,810,000* 445,000 .25
EQ 4.12 20% 12 1,432,000* 443,000 .31

EO 4.15 10% 48 1,771,000 396,000 .22
EQ 4.15 5% 32 1,738,000 331 ,000 .19
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3. Spruce Modulus

The Wood Handbook (1974) lists an average green Sitka

spruce modulus value of 1,230,000 psi. Table 3 summarizes

the values obtained by the method of EQ. 415,

It appears the published value, which is 1% larger than

the final field value of 1,222,000 psi, is a good value to

use in the bending and buckling calculations,

C. Base Stiffness

To determine load bearing capacity, base stiffness

values are needed. The end condition for the base of a tree

is somewhere between pinned (free to rotate) and fixed

(infinitely stiff). Figure 9 illustrates how such a system

might be modeled.

A pin is shown at the bottom, but a spring of stiffness

K is attached at the rotation point. The stiffness could be

variable with rotation, or constant. A constant stiffness is

defined in units of end moment per unit of angular rotation,

ie. K = 10 ft-kips/degree means it would take 10,000 foot-

pounds of moment to rotate the base one degree. The work

presented here considers the value of K to be constant over

its elastic range of behavior.



TABLE 3. Spruce Modulus of Elasticity (E) Results

Maximum Variation Coefficient
of E for Interval Sample Mean Standard of

Method end Direction Size Value(psi) Deviation(psi) Variation

EQ 4.15 25% 64 1,239,000 418,000 .34

15% 61 1,241,000 428,000 .34

10% 52 1,222,000 412,000 .34

Note: Wood Handbook (1974) average value for green Sitka spruce, E 1,230,000 psi
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Figure 9. Structural Model 0f a Tree
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Base stiffness values were determined by multiplying

loads (P) by the height they were applied (L), and dividing

the product by the number of degrees the base rotated

which was measured with the leveling rod.

Three loads were applied in each direction at each load

height. If the applied loads were within the range of

linear, elastic behavior, the three dati points would form

a line starting at zero, with a constant slope (stiffness)

K. The theoretical relationship is:

M = K (4.16, Pyles)

where: M = base moment, ft-kips

K = base stiffness, ft-kips/degree

= degrees of base rotation.

The relationship is displayed in Figure lOa. The field

data, plus one known value of (0,0) were fit to straight

lines using the least squares method. The form of the

equations was:

M = K (es) + M (4.17, Pyles)

where the variables are defined for EQ. 4.16, and is

the moment intercept. The relationship is displayed in

Figure lOb.
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1. Alder Base Stiffness
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The computed values for alder are displayed in

Table 4.

As evidenced by the high values for R2, we see the

values of K are fairly linear and therefore constant for a

given direction.

However, we also see variation in the values of K for

each tree. The largest difference from low to high K is

found for Tree 3, which has a 225% difference (71.41 to

232.34 ft-kips/degree). The. lowest range is found in

Tree 5, with a difference of 21% from low to high K.

A reason why base stiffness would vary with pull

direction has not been found. The following possible causes

were evaluated:

The strongest direction could be in the direction

of prevailing winds. Azimuths of pull direction were

recorded, and highest K values were spread throughout the

four quadrants.

The highest K for a tree could be related to the

direction which had the highest (or lowest) maximum base

moment applied. No relationship was apparent.

The variation of K could be related to the amount

of lean. Tree 5 had the greatest amount of lean from

vertical (7.61), and had the least variation in base

stiffness. Tree 3 was second in terms of lean (6.3°) and

had the most variation in K.



* (ft-kips/degree)** (ft-kips)

.39

Tree With Lean

TABLE 4. Alder Base Stiffness Values

Against Lean Right Angle to Lean
(DIB 5 ft) k* Mo** R K* Mo** R2 K* Mo**

Tree 1 202.74 2.75 .99 191.05 4.24 .98 291.16 4.0 .987
(19")

Tree 2 425.03 6.32 .99 513.57 1.88 .99 279.30 12.32 .97
(25.1')

Tree 3 71.41 9.32 .96 108.97 3.30 .99 232.34 1.44 .99
(16.3')

Tree 4 152.31 -.08 1.00 114.53 .59 1.00 178.21 1.42 .99
(17.0)

Tree 5 65.66 .80 1.00 79.31 -.39 .98 79.35 .53 1.00
(12.8")

Tree 6 47.61 -.22 1.00 49,39 1.06 .99 91.84 -.5 1.00
(14 . 3' )
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The highest or lowest value of K could be related
to the order in which the direction was pulled. The highest
value of K for a tree was never in the first direction
pulled, and the lowest value of K was never in the direction
pulled last.

The variation in K could be related to tree

dian'ieter. No relationship was observed between variation and

increasing or decreasing tree dian'ieter.

Non-zero values for N0 are indicative of measuren'ient

errors. Son'ie of the values for N0 appear large, considering
the theoretical value is zero. However, all of the values
of N0 are less than 10% of the maximun'i base mon'ient that was

applied in the given direction, and in that context are not
considered large (Figure lob); For exan'iple, Tree 3, with

lean, has an N0 of 9.32 ft-Kips, but the maximum base moment

that was applied in this direction was 102 ft-kips; hence
is only 9% of the rnaxin'ium applied mon'ient.

For buckling and bending calculations, a function that
relates base stiffness. to tree size is needed. Pyles (1984)

developed linear, exponential and power functions for
Douglas-fir base stiffness as a function of dian'ieter inside
bark at five feet height (DIB at 5 ft). He determined that a

power function n'iade the most physical sense, because it
yields a base stiffness of zero for zero diameter.



41

The values of base stiffness (K) for alder from

Table 4 are plotted versus fIB at 5 ft in Figure 11. Also

plotted are power functions of the form K = a (DIB)'. The

middle curve was fit to all values of K, the upper curve to

the highest value of K for each tree, and the bottom curve

to the lowest value of K for each tree.

Since there was a great deal of variation in the range

of K for each tree, the bottom curve will be used in the

tail tree analyses.

Hemlock Base Stiffness

As was done for alder, the base moment and base

rotation values were fit to lines of the form M = K (es) +

M0, and the regression values are displayed in Table 5.

The high R2 values indicate the applied loads were

within a linearly elastic range of behavior. The largest

value of was small compared to the applied moments, being

only 7% of the maximum base moment applied in that

direction.

Again base stiffness varies for each tree, though not

as much as alder on a percentage basis. The reason(s) for

the variation are not apparent, although pull azimuths were

not recorded for hemlock.

The values of base stiffness versus DIB at 5 ft are

plotted in Figure 12. To be conservative, the lowest curve

will be used in the tailtree analyses.
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TABLE 5. Hemlock Base Stiffness Values

* (ft-kips/degree)
** (ft-kips)
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Tree
(DIB 5

I With Lean Against Lean Right Angle to Lean
ft) k* p1O** R2 K* Mo** R K* Mo** RZ

Tree 1 53.70 .43 1.00 73.16 0.67 1.00 112.79 .68 1.00
(12.6")

Tree 2 69.56 3.20 .98 83.64 .92 1.00 94.24 2.09 .99
(14.3)

Tree 3 12.78 .51 .99 14.45 .59 .99 17.41 1.04 .98
(7.5")

Tree 4 238.02 1.10 1.00 248.97 2.64 .99 267.75 2.45 .99
(16.1)
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Spruce Base Stiffness

Fitted values for M = K ( e) are displayed in

Table 6. Variation in values of K for each tree is somewhat

larger than for hemlock, but less than for alder. For the

most part it appears as though a linear model does

adequately represent base moment as a function of base

rotation.

As was done for hemlock and alder, values of K were fit

to curves of the form K = a(DIB)b, which are shown in Figure

13. Again the lowest curve will be used in the calculations.

It is noted that the location of the curves was heavily

influenced by the 18.3 inch tree. When later attempting to

pull its stump, it was learned that its root system was

heavily entwined with the root system of an adjacent tree.

Therefore, its stiffness may not be typical for other trees

of its size.

Base Stiffness Related to Load Height

As stated in Study Methods, we were also interested in

the relationship between base stiffness and the height of

applied load.

Separate studies of Douglas-fir base stiffness reported

by Pyles (1984) and Stoupa (1984) determined different

values. Stoupa's work with stumps yielded a higher value

for base stiffness than did Pyles' work on support trees, on

whose methods most of this paper is based.



* (ft-kips/degree)
** (ft-kips)

TABLE 6. Spruce Base Stiffness Values
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Tree I

(DIB 5 ft)
Right Angle to Lean With Lean Against Lean

R2K* Jio** R1 K* Mo** R2 K* MO**

Tree 1 18.20 .99 .98 7.51 1.84 .93 8.49 .50 .98
(9.9 )

Tree 2 25.02 7.16 .89 17.62 7.65 .87 20.68 1.29 .99
(1 2, 7')

Tree 3 22.04 7.74 .92 46.1 .81 1.00 41.68 2.12 .99
(14 . 4)

Tree 4 347.03 .85 1.00 243.84 -.15 1.00 297.15 .46 1.00
(18 .3")
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If the model pictured in Figure 9 is a good represen-

tation of how the system operates, then moving the load

point down the tree should yield the same value of K in the

same direction.

The values of base stiffness for alder for differing

heights are shown in Table 7. A definite trend of increasing

base stiffness with decreasing load height is seen.

All trees had base stiffness values for 15-foot load

heights. To put all values on an equal basis, they were

normalized by dividing the pull heights by 15 feet, and the

base stiffnesses at each height by the base stiffnesses at

15 feet. The normalized values were fit to a straight line

of the form:

Pull height

15 ft
= ab

where a and b are regression constants,

a = 4.57

b = -3554

R2 = 81

The data for alder suggests there may be a relationship

between base stiffness and load height.

The effect of load height on spruce and hemlock base

stiffness is inconclusive. The values are shown in Table 8.

Base stiffness decreases with load height for Spruce 1 and

2, and generally increases for 3 and 4.

K (pull height)

K (15 feet)
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TABLE 7. Alder Base Stiffness Values for Decreasing Load Heights1

Load Height (ft) K(ft-klps/degree) Mo(ft-kips)

Tree 2, Right Anqle Pull 32.5 279.3 12 .32
25 306,48 -5.01
15 381 .28 1. 66

Tree3, Pull with Lean 27 5 71.41 9.32
20 97.61 1.34
15 101.16 1.58

Tree 4, Pull Against Lean 22 5 114.53 .59
15 125.88 1.03
10 125.06 .59

Tree 5, Pull with Lean 22 5 65 .66 .80
15 66 . 08 .81
10 71 .95 .40

Tree 6, Pull with Lean 20 47.61 -.22
15 53.81 - .20

10 56.66 -.14

1/ Insufficient data was taken for Tree 1.
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Tree 1, Pull With Lean

Tree 2, Pull with Lean

Tree 3, Right Angle Pull

Tree 4, Pull With Lean

Tree 1, Pull with Lean

Tree 2, Pull with Lean

Tree 3, Pull Against Lean

Tree 4, Pull Against Lean

TABLE 8. Spruce amd Hemlock Base Stiffness Values for
Decreasing Load Heights

Spruce

Load Height (ft) K(ft-kips/deqree) Ko(ft-kips)

15 7.51 1.84
10 6.73 .20
5 5.43 .98

25 17.62 7.65
20 14.25 1.55
15 12.62 2.53

30 22.04 7.74
25 23.73 1.84
20 26.88 .71

25 243.84 -.15
20 240.8 .53
15 269.27 1.46

Herol ock

25 53.7 .43
20 55.57 .69
15 57.87 1.18

30 69.56 3.2
20 54.41 2.55
10 58.55 1.17

15 14.45 .59
10 14.43 .71
5 12.42 .55

35 248.97 2.64
27.5 245.82 1.78
20 277.03 2.46

50
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Base stiffness increases with decreasing load height in

Hemlock 1, generally decreases with load height in Hemlocks

2 and 3, and shows no pattern in Hemlock 4.

D. Tail Tree Analysis

The Euler equation is commonly used to calculate

critical buckling loads, hence maximum cable loadings for

tail trees. As pointed out by Pyles (1984) and Sessions,

Pyles and Mann (1985), such use of the Euler equation is

inappropriate.

Tail tree rigging configurations violate several of the

assumptions implicit in use of the Euler equation. Some of

the conditions required for its use are:

That we are dealing with a long, slender column,

meaning a slenderness ratio greater than about 150.

This translates to a rigging height about 38 times the

column's diameter. For example, a 20-inch diameter

column would have to be rigged to a height of about 63

feet for buckling to be the expected failure mode.

The column is initially straight and remains so

with increasing axial load. This condition is most

likely never met. Even 4 guylines cannot prevent

deflection of the tree toward the yarder as skyline

tension is applied.



3) The line of action of the load is colinear with the

vertical axis of the column. This condition also is

probably never met, as the skyline, when run through a

block hung on the side of the tree, transmits a load

that is several inches from the center of the tree's

cross section.

The method of analysis to be used in this paper will be

that proposed by Sessions, Pyles and Mann (1985). This

method considers tail tree failure to be a result of

combined axial and bending stresses rather than due to

buckling. The effects of eccentricity of the load (item 3

above) are not included.

To calculate the combined axial and bending stresses in

a tail tree, it is first necessary to solve the general

relationship between bending moment and deflection for an

elastic curve:

2dy M

dx2 = El

where:

(2, Sessions, et al. )

V = transverse deflection of the member, inches

X = longitudinal position along member, inches

M = modulus of elasticity, psi

I = moment of inertia, inches4
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Figure 14a illustrates a two-dimensional case with a

single guyline. Equation (2) can be rewritten as follows:

(7, Sessions, et al. )

where:

H = horizontal force on the tail tree, pounds

P = vertical load on the tail tree, pounds

1 = length of member between load and base, inches

x, y as defined above.

Because the moment of inertia, I, varies over the

length of the tree, a numerical technique is the most direct

method for solution of EQ. 7.

A solution to EQ. 7 must be compatible with the

following:

1) the reaction at the base of the tree,

Mb

2dy
2

dx

H(l-x) + P(y)

El

K=
base

base

(8, Sessions, et al. )

where: K = base stiffness value, ft-kips/degreebase

Mbase = moment at base of tree, ft-kips

0 = rotation at base of tree, degreesbase

2) the reaction at the top of the tree, as defined by

the stiffness of the guyline.

53



54

Figure 14. Model for Combined Stress Calculations



Once a solution to EQ. 7 has been found, the combined

(total) stress at any point along the tree, can be

computed with the following equation:

P MCxx
a = +

A I
x x

x

where:

= combined stress at point x, psi

P = vertical load on the tree, pounds

A = cross sectional area at point x, inches2

= moment at point x, inch-pounds

= radius inside bark at point x, inches

= moment of inertia at point x, inches4

As Sessions et al., point out, the largest value of

combined stress will result from summing the axial and

bending stress components, ie. using the plus sign in

EQ. 9. It's also noted that the point of maximum stress

will not necessarily be at the base of the tree, because of

taper.

All the functions and values needed to calculate

combined stress,
°x'

for alder, Sitka spruce and western

hemlock were determined in the previous sections.

Before beginning the calculations, some parameters had

to be established. The first of these to consider was what

upper value of combined stress would be used for analysis.

55
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The Wood Handbook (1974) lists average values for

maximum compression (crushing strength) parallel to grain.

It also reports an average coefficient of variation for

these values of 18% for 50 species. Since coefficient of

variation is a ratio of the standard deviation to the mean,

an estimate the standard deviation for a given species can

be made by multiplying its mean crushing strength by .18.

In keeping with the desire to make conservative

estimates of load bearing capacities, it was decided to

subtract 3 standard deviations from the mean values for

crushing strength. If the populations were normally

distributed, less than 1% of the samples tested would have

failed at that stress. The published maximum compressive

stresses and estimated lower limit values are displayed in

Table 9.

Referring to Figure 14a, the following variable values

were set for calculations for varying diameters:

ct-guyline, a-skyline = 45°

guyline diameter = 3/4"

guyline metallic area = .262 in2

guyline unit weight = 1.04 lb/ft

initial lower end guyline tension = 100 lb.

guyline modulus of elasticity, E = 14,000,000 psi

load height, 1 = 30 ft.



Species

TABLE 9. Maximum Allowable Compressive Stress, a, Values

Mean Maximum1
Compressive Stress

(psi)
Estimated Standard2 Mean Minus 3
Deviation, s (psi) Standard Deviations (psi)

Red alder 2960 532.8 1360

Sitka spruce 2670 480.6 1228

Western hemlock 3360 604.8 1546

1Wood Handbook (1974). Values are for green wood, maximum crushing strength
parallel to grain.

2Average coefficient of variation, cv, for 50 species 0.18

cv = s/ar = 0.18 ,
= o

(.18)
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A value for skyline angle, , which would yield the

maximum combined stress per pound of skyline tension was

desired. Sample runs were made for an 18-inch (inside bark)

alder, and the results are displayed in Figure 15. At about

15° below horizontal (=75°) a given stress condition is

reached with the lowest amount of skyline tension.

A horizontal angle of (-)15 degrees was also found to

maximize stress per pound of skyline tension for spruce, but

(-)10 degrees ( = 800) was found to be "critical for

hemlock.

Skyline angles below (-)30 degrees were not evaluated.

As the steepness of the skyline angle increases, the

resultant of the forces at the top of the tree rotates in a

clockwise direction, and would eventually point toward the

rear of the tree. To simulate this condition, a front

guyline would be needed, and this has not yet been

incorporated in the model used in this study.
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1. Alder Analysis

A plot of combined stress versus vertical load in an

18" DIB alder is shown in Figure 16. The 100 pounds

pretension causes an initial stress of 47 psi. Stress

increases rapidly until about 2500 pounds of vertical load.

In this range, the °belly" of the guyline catenary is being

taken up as the top of the tree is deflected toward the

skyline, Figure 14a,b. After the guyline has tightened,

stress increases at a lower rate.

If we define the maximum allowable stress at 1360 psi

(Table 9), we see the vertical component of the forces at

the top of the tree (P in equations 7 and 9) is about 82,500

pounds. For comparison, a critical buckling load, Pcr for

the tree was computed using the method presented by Pyles

(1984). The method allows calculation of critical buckling

loads for columns with varying moment of inertia, and given

base stiffness. The same moment of inertia and base

stiffness functions were used as in the bending

calculations, and the end conditions were pinned at the top,

restrained at the bottom. The value of Pcr was 398,700

pounds.

Assuming we would not want to exceed a normal stress of

1360 psi at the rigging height, where the diameter would

probably be the smallest, the maximum allowable vertical

load would have to be decreased from 398,700 to 199,600

pounds.
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In this case, when analyzing the tail tree in terms of

buckling, maximum axial stress limits the vertical load, but

yields a value 142% larger than the bending analysis

(199,600 pounds versus 82,500 pounds).

A buckling calculation was also done for a pinned-

pinned case, which yielded a critical buckling load of

233,700 pounds. Again, the maximum axial stress of 1360 psi

would be limiting, and we would still predict a maximum

vertical load of 199,600 pounds.

In fairness to the buckling approach, it should be

noted that the criterion of a slenderness ratio greater than

150 is not met by the above example. If we assume an average

column diameter of 14.5, which is equal to the diameter at

two-thirds the rigging height, the tree would have to be

rigged at least 46 feet up. It's doubtful any alder could

be rigged to a height that would meet the slenderness ratio

criterion, without going past a fork in the tree.

Sessions, Pyles and Mann (1985) compared the combined

stress approach to the Euler equation for a Douglas-fir

which did meet the slenderness ratio criterion. For an

assumed constant cross section, and varying end conditions,

they found that critical buckling loads bracket maximum

allowable vertical load, as determined from combined stress.



Figure 17 displays combined stress versus skyline

tension for the case we've been examining. It would take

about 57,500 pounds of skyline tension to create 1,360 psi

of combined stress. The point of maximum combined stress

would be 15 feet from the base of the tree.

Calculations of combined stress were also made for

other diameter classes within the size range that field data

was obtained, and the results are displayed in Figure 18.

As we would expect, the skyline tension required to reach a

given combined stress increases with diameter. To reach a

stress of 1,360 psi, about 51,000 pounds of skyline tension

would be required for a 14" DIB alder, whereas about 90,000

pounds would be required to cause the same stress condition

in a 26 DIB alder.

The values of skyline tension required to produce a

combined stress of 1360 psi are shown versus tree dianeter

in Figure 19. The plot suggests that for a given geometry,

pretension, etc., the relationship between skyline tension

and a given allowable stress condition may be a well defined

function of tree diameter.
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2. Spruce Analysis

Stress calculations were done for four diameter

classes. Input geometry, etc. was identical to alder,

except, of course, for the base stiffness, modulus of

elasticity, and moment of inertia function. The plots of

total stress versus skyline tension are shown in Figure 20.

The 100 pounds of guyline pretension in the 12-inch

spruce deflects the tree toward the guyline enough to cause

a combined stress of 170 psi. Once skyline tightening

begins, it takes about 8,000 pounds of tension to create the

same stress condition in the direction of the skyline.

Skyline tensions to the assumed maximum stress of 1228

psi versus diameter are -shown in Figure 21. No inference

should be drawn about strength characteristics beyond the

range displayed.

It is interesting to note that a 16-inch alder can

resist about 15% more skyline tension than a 16-inch spruce

(60.3 kips vs. 52.3 kips), before reaching its allowable

stress.



2000

1600

1200

800

400 7/7/

v->'
,,

/

20000 40000 60000 80000

SKYLINE TENSION (LBS)

Figure 20. Combined stress vs Skyline Tension for Various
Spruce Diameters

68



60

55

('4
Z 50
OLL
coOz
wC0

w

Zi-
>-

40

35

69

12 14 16 18

DIB5ft (IN)

SPRUCE

Figure 21. Skyline Tension to Allowable Stress in Spruce vs
Tree Diameter



70

3. Hemlock Analysis

As done for alder and spruce, stress calculations were

made for the same geometry, etc., except that a skyline

angle of 100 below horizontal was used, as it maximized

stress per pound of skyline tension. Figure 22 displays

total stress versus skyline tension.

No plot of skyline tension to combined stress of 1546

psi is displayed. As there was only a 4-inch range in field

tested diameter classes, it may seem trivial. However,

looking at the 16-inch class, with a skyline tension of

about 70,000 pounds to its maximum stress, hemlock appears

to be the strongest of the three species tested. The 16-

inch alder had a maximum tension of 60,300 pounds, and the

16-inch spruce a value of 52,300 pounds.
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4. Parameter Study

a. Modulus of Elasticity

Rather than using the published average Wood Handbook

(1974) values for moduli of elasticity, more conservative

estimates could have been made using the same method that

was used to establish maximum allowable compressive stress

values.

The Wood Handbook (1974) reported an average

coefficient of variation for modulus of elasticity of 22%,

for approximately 50 species tested. Using the coefficient

of variation to estimate the standard deviation for each

species, the assumption was made that 95% of the modulus

test values were within plus or minus 2 standard deviations

of the mean values. Combined stress calculations were made

for a 16 inch tree of each species, using the upper and

lower values for modulus of elasticity.

The upper, lower and mean values for modulus, and the

estimated standard deviations are shown in Table 10. The

upper and lower values are all about 44% larger or smaller,

respectively, than the mean values.

Combined stress versus skyline tension curves for the

upper and lower alder modulus values, and for the mean

modulus are shown in Figure 23. As noted earlier, the
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TABLE Values for Modulus of Elasticity10. Alternatiye

1Wood Handbook (1974)

2Estimated from reported average coefficient of variation of 22.

73

Species
1 2

Lower Value Upper Value
Mean Estimated Standard (Mean Minus 2) (Mean Plus 2)

Modu1us (psi) Deviation (psi) (Standard Deviations) (Standard Deviations)

Al der 1,170,000 257,400 665,200 1,684,800

S p ru c e 1,230,000 270,600 688,800 1,771,200

Hemlock 1,310,000 288, 200 733,600 1 ,886,400
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calculations for mean modulus reached 1360 psi at about 60.3

kips of skyline tension.

The curve with the upper modulus value reached 1360 psi

of stress at about 54.4 kips of skyline tension, and the

curve with the lower modulus reached the allowable stress at

about 63.5 kips.

Increasing the modulus value by 44% resulted in a 10%

decrease in skyline tension required to reach allowable

stress. Decreasing the modulus resulted in a 5% increase in

allowable skyline tension.

Figure 24 displays stress versus skyline tension curves

for varying spruce moduli. The skyline tensions to the

allowable stress of 1228 psi are 47.5 kips, 52.3 kips and

547 kips for the upper, mean and lower modulus values,

respectively. The higher modulus reduced the allowable

skyline tension by 9%, and the lower modulus added 5% to

allowable skyline tension.

Combined stress versus skyline tension for varying

hemlock moduli are shown in Figure 25. The loads to the

allowable stress of 1546 psi are 58.7 kips, 70.7 kips and

82.6 kips, respectively. The higher modulus reduced

allowable skyline tension by 17%, and the lower modulus

increased allowable tension by 17%. It is noted that the

guyline stress for the reduced hemlock modulus calculations

would probably have exceeded the proportional limit before

the tree had reached its allowable stress.
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In calculations with the mean modulus values, and

compressive stress values reduced by 3 standard deviations,

it has been assumed we have been operating within the

proportional limits of the wood. The values of strain would

be .0012, .001 and .0012 for alder, spruce and hemlock,

respectively. Using the reduced moduli, the values of

strain would be .002 for all three. It is assumed we would

still be within the proportional limits.

For the geometry, etc. analyzed, hemlock seemed to be

the most sensitive to changes in modulus of elasticity,

followed by alder and spruce. Considering that changes in

modulus on the order of 44% result in a maximum change of

17% in skyline tension to allowable stress, it appears that

combined stress calculations are not very sensitive to

modulus of elasticity.

b. GuIline Pretension

The effects of guyline pretension are of interest. All

previous calculations have been made with an initial 100

pounds of lower end tension in the guyline. Two additional

sets of calculations were made for a 16 inch DIB alder, one

with 50 pounds of pretension, and one with 150 pounds. The

resulting stress versus skyline tension curves, along with

the curve for 100 pounds of pretension are shown in

Figure 26.
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Immediately we see that with only 50 pounds of

pretension, stress increases rapidly in the tree while slack

in the guyline is being taken up. The skyline tensions

required to yield a stress of 1360 psi for the given

pretensions are: 50 lb - 31 kips, 100 lb - 60.5 kips, 150

lb - 67.5 kips. A 95% increase in maximum skyline tension

is obtained in going from 50 to 100 pounds of pretension.

c. GuLljne Diameter

Previous calculations were made with a 3/4 inch

guyline. An additional set was made for a 16 inch DIB alder

with a 5/8 inch guyline, and a set was made with a 7/8 inch

guyline. The results for the guyline sizes are displayed in

Figure 27.

The amount of sag in the guyline increases with size

for the same value of pretension, so very little slack needs

to be taken up in the 5/8 inch line, and it is more

effective in controlling stress during the beginning phase

of skyline tensioning.

As we might expect, increasing guyline size increases

the amount of skyline tension needed to create 1360 psi of

stress. However, we encounter diminishing returns very

rapidly. The skyline tensions to the assumed allowable

stress for the given line sizes are: 5/8 inch - 56.3 kips,

3/4 inch - 60.5 kips, 7/8 inch - 57.4 kips.
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d. Rijn Heiht

Figure 28 displays combined stress in a 16 inch DIB

hemlock versus skyline tension for the control height of 30

feet, and for heights of 25 and 35 feet. Increasing the

height from 30 to 35 feet results in a 4% reduction in

skyline tension (70.7 to 67.8 kips) to the allowable stress

of 1546 psi, and decreasing the height from 30 to 25 feet

results in a 2% increase in allowable skyline tension (70.7

to 72.4 kips).

Figure 29 shows stress in a 16 inch DIB spruce for 25,

30 and 35 feet. Increasing height from 30 to 35 feet reduces

skyline tension to the allowable stress of 1228 psi by 13%

(52.3 to 45.4 kips), and decreasing height from 30 to 25

feet increases allowable tension by 10% (52.3 to 57.7 kips).

Stress in a 16 inch DIB alder versus skyline tension

for varying heights is shown in Figure 30. Increasing load

height from 30 to 35 feet decreases allowable skyline

tension by 11% (60.3 to 53.8 kips), and decreasing load

heiqht from 30 to 25 feet increases allowable tension by 9%

(60.3 to 65.7 kips).

For the geometry and other set inputs, it appears that

hemlock is the least sensitive to changes in rigging height.
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5. ComQarison with Douglas-fir

As mentioned in the introduction, the Oregon State

Safety Code (1984) says to add 2 inches to recommended

diameters for Douglas-fir tail trees when using other

coniferous species.

At the end of Hemlock Analysis, the three species

tested were ranked according to the skyline tension required

to create the maximum allowable stress in a 16 inch tree.

The values were:

SKYLINE TENSION (lbs)
TO MAXIMUM ALLOWABLE

SPECIES STRESS

86

Hemlock 70,700
Alder 60,300
Spruce 52,300

A. bending analysis was done for a 14 inch (inside bark)

Douglas-fir. The same geometry was used as for the other

species. A skyline angle of (-) 10 degrees (
= 80) was

found to maximize stress per pound of skyline tension.

The Wood Handbook (1974) average, green wood modulus of

elasticity of 1,560,000 psi was used. A maximum allowable

stress of 1740 psi was calculated exactly as it was done for

the other species. The base stiffness and moment of inertia

functions for Douglas-fir were developed by Pyles (1984).

A plot of skyline tension versus cOmbined stress for

the Douglas-fir is shown in Figure 31. Also shown are the

curves for the 16 inch alder, spruce and hemlock.
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The 14 inch Douglas-fir reaches its allowable stress of

1740 psi at about 65,000 pounds of skyline tension. The 16

inch hemlock reaches its maximum at 70,700 pounds, so the

State's recommendations may be slightly conservative for

hemlock.

The spruce reaches its maximum stress at 52,300 pounds.

Referring to Figure 21, it appears that even an 18 inch

spruce could not withstand 659000 pounds of skyline tension

without exceeding its maximum allowable stress.

Figure 19 indicates it would take an alder with an

inside bark diameter of just over 17 inches to withstand

65,000 pounds of skyline tension.

The above comparisons are for a particular rigging

height, geometry, pretension, etc. The relationships

between the species may not be the same for all cases.



V. SUMMARY

One objective of this study was to determine if the

published values for modulus of elasticity could be used to

predict cable loadings for red alder, Alnus rubra Bong.,

Sitka spruce, Picea sitchensis (Bong.) Carr, and western

hemlock, Tsu2a heterophj'lla (Raf. ) Sarg. , support trees.

Field measurements indicated published values obtained from

tests on small wood specimens could be used. For the rigging

height and geometry evaluated, sensitivity analysis

indicates that a difference in modulus of plus or minus 44%

would affect load bearing capacity by a maximum of 17%.

Base stiffness values were developed for each species.

A relatively large amount of variation was found with pull

direction, and it appears that base stiffness may increase

as load height decreases.

Normalized moment of inertia functions were developed

for each species. A statistically based, repeatable

procedure for forcing regression and confidence interval

lines through a known point was documented.

Some of the violations inherent in analyzing support

trees in terms of buckling were reviewed, and a case was

analyzed wherein a buckling/axial stress analysis predicted

a significantly larger allowable vertical load than did a

combined stress analysis.
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For the size classes and rigging height tested, alder

was found to be between hemlock and spruce in support

capacity. All three species are able to support relatively

high skyline tensions before reaching conservative estimates

of maximum combined stress.

The load bearing capacity of a 14 inch DIB (diameter

inside bark) Douglas-fir, Pseudotsuga menziesii (Mirb.)

Franco, was compared to those of a 16 inch DIB alder, spruce

and hemlock. It was found that the 16 inch DIB hemlock

could support about 9% more skyline tension to its allowable

stress than the 14 inch Douglas-fir. An alder of at least

17 inches DIB would be needed to support the same load as

the Douglas-fir, and a spruce with a DIB over 18 inches,

which is outside the range of the field data, would be

needed.

The effect of tree lean on combined stress was not

determined. Any effects would probably vary with the

direction of pull relative to the lean. Intuitively, we

could expect an increase in combined stress for most cases.

The importance of quantifying the effects of all the

variables that make up tail tree system was shown in the

limited parameter analysis. Of the variables tested, guyline

pretension seemed to have the greatest effect on total

stress.



VI. SUGGESTIONS FOR FURTHER RESEARCH

Values for base stiffness over a greater range in tree

diameters is needed for hemlock and spruce.

Base stiffness values for a greater range in stand

characteristics, topography, etc. are needed for all

speci es.

Better understanding of base stiffness variation with

pull direction is needed.

4, Final determination of the relationship between base

stiffness and load height should be made. If base

stiffness does increase with decreasing load height,

the importance to support capacity must be determined.

Values for stump pullout resistance need to be

determined for alder, hemlock and spruce.

The importance of the eccentricity of the skyline load,

due to its application through a block on the side of

the tree, needs to be determined.

Inclusion of the effect of tree lean on support

capacity is needed.

Additional guylines must be included in the model to

more completely simulate actual support conditions.

Dynamic loads may affect tail tree support capacity,

and a study of the effects is in progress.
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APPENDIX A

Method for Forcing a Regression
Line Through a Point
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Reference:
Neter, J., W. Wasserman and M. Kutner.
Applied Linear Regression Models. Illinois:
Richard 0. Irwin, Inc., 1983. pp. 160-163.

The desire was to force a regression line of the

general form = b, and also the lower limit for expected

value through the same point.

More specifically, the dependent variable was the ratio

of moment of inertia at a given height, Ih, to the moment of

inertia at 5 feet height, 15. This ratio, Ih/15 was to be a

function of height, h. The form of the equation was Ih/15 =

hb. Logically, and physically Ih/15 must equal 1 when h = 5

feet, ie. 15/15 will equal 1 for all trees.

Since we wanted to force the regression line through

the point (5,1), ie. at 5 feet Ih/15 = 1, we set up a

program that would minimize the sums of (Ih/15-1)2 and

(height-S)2.

A log transformation as follows is required to use the

least squares method for determining the b-coefficient:

if Ih/15 = hb
, then log (Ih/15) = b log h

To force the regression line through (5,1), the

following relation was used:

was defined as log (hi) - log (5),

y was defined as loQ (Ih) - log (1)

and b was determi ned by:
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b

z x y

2
z x.

the variance, S (Y)

Z(Y-bx )

where MSE =

and finally the lower limit for the prediction interval was

obtained by:

Y - t(s)(Y.)
1

where t is a 2-tail value with n-i degrees of freedom.

n-i

x(MSE)

z
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APPENDIX B

Variables in Modulus of
Elasticity Calculations
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Ah

hi

h2

h3

TREE BASE

VARIABLES IN

MODULUS OF ELASTICITY CALCULATIONS

Note: All deflections are those remaining after
base rotation has been subtracted.

Di=di-d2 D2=d2-d3

H1=hl-h2 H2=h2-h3

-ei=Di/Hi -e2D2/H2

h=h1-h2
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