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This paper presents an evaluation of the cable loading

support capacity of red alder, Alnus rubra Bong., Sitka

spruce, Picea sitchensis (Bong.) Carr, and western hemlock,

Tsuga heterophylla (Raf.) Sarg., tail trees. Capacity 1s

measured in terms of combined stress resulting from
compression and bending, rather than the traditional methods
of buckling or compressive stress alone.

Results from field tests to determine moduli of
elasticity, base stiffness values, and functions for moment
of inertia are presented to provide strength properties for
capacity analysis.

A two dimensional model with one gquyline 1is used to
calculate the combined stress at points along the trees. In
addition to stfength properties of each species, model

inputs include front and rear skyline angles, rigging



height, and the following guyline parameters: angle,
metallic area, unit weight, modulus of elasticity, and Tower
end pretension.

The control calculations for each species are made with
the gquyline angle equal to a rear skyline angle of 45
degrees. A 3/4" quyline with 100 pounds of pretension is
used, and the skyline and guyline are placed at a height of
30 feet. Given these conditions, it was found that a
skyline angle of about 15 degfees below horizontal maximized
combined stress per pound of skyline tension in alder and
spruce. An angle of about 10 degrees below horizontal was
found to maximize stress 1in hemlock per pound of skyline
tension.

Figures are presented which show that sky11ne tension
to a given 1level of stress may be a function of tree
diameter, if other variables are held constant.

Values for maximum allowable combined stress for each
species are set by adjusting published average values
downward. Calculations for 16 dinch (diameter 1inside bark)
trees indicate that hemlock is able to withstand the
greatest skyline tension of the three species before
reaching 1its allowable stress, with alder and spruce
following in descending order.

A comparison is made between a 14 dinch DIB Douglas-fir,

Pseudotsuga menziesii (Mirb.) Franco, and a 16 dinch DIB

alder, spruce and hemlock. Calculations dindicate the



hemlock can withstand about 9% more skyline tension to its
allowable stress than the Douglas-fir. An alder slightly
over 17 idinches DIB would be needed to support the same
tension, énd a spruce with a DIB over 18 inches, which 1is

outside the range of field data, would be needed.
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I. INTRODUCTION

Concern for logging impacts on soil and water quality,
and economics often necessitates the use of tail trees in
cable logging to provide sufficient 1ift to a turn of Tlogs.
Intermediate supports are sometime§ also needed to meet
suspension requirements. Figure 1 Jllustrates the use of
a tail tree and a double tree intermediate support.

The Logging Division of the Oregon Occupational Safety
and Health Code, Appendix 80-K (1984) contains a table of
recommended minimum diameters for west coast Douglas-fir,

Pseudotsuga menzijesii (Mirb.) Franco, tail trees. Appendix

80-J contains a similar table for double-tree intermediate
support systems. Two blanket recommendations are made for
non-Douglas-fir species:

1. add two inches to recommended diameters for
Douglas-fir tail trees if using another conifer
species, and

2. reduce recommended Douglas-fir intermediate
support loads by 25% when using other conifer
species.

Both tables address the wuse of —conifer species;

however, conifers are not always located where a support is
needed. Along the Coast Range of Oregon, red alder, Alnus

rubra Bong., Sitka spruce, Picea sitchensis (Bong.) Carr,
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Figure 1. Cable Logging System Support Trees

Pyles, 1984
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and western hemlock, Tsuga heterophylla (Raf.) Sarg., are

very common species and many times are major components in
a harvest unit. Until now, the Tload bearing capacity of
these species has not been quantified.

If we look at a simplified side view of a tail tree
rigging configuration (Fiqure 2a), and assume that the
horizontal component of the skyline tension 1is offset by
guylines (which are required in Oregon), then the major
force of concern, with respect to failure, is the vertical
(axial) component of the load (Pv):

As summarized by Pyles (1984), a tree subjected to
axial compression (load Pv) to the 'point of failure can
behave in one of three ways:

1. It can fail in direct compression if the

compressive strength of the fibers is
exceeded.

2. It can fail by exceeding the combined
bending and compressive strength of the
fibers when in a stable, elastic, deflected
shape, or

3. It can fail catastrophically by becoming

unstable and buckling.
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Figure 2.

Simplified Tail Tree with Cable Forces

{(a) Assuming no delection occurs under loading

(b} assuming lateral deflection does occur

under loading
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If we assume that some lateral deflection of the top

of the tree takes place, as shown 1in Figure 2b, then a

combination of axial and flexural stresses will Tead to

failure. Pyles (1984) states this mode of failure (bending)

is more Tlikely to occur 1in cable support trees than a
buckling failure.

This paper will concentrate on bending as the mode of

fajlure. Comparisons with buckling as the mode of failure

will also be made.



II. OBJECTIVES AND SCOPE

To determine the Tload bearing capacity of tail trees
in terms of combined axial and bending stresses, solutions
will be needed for the following relationship between

bending moment and deflection for an elastic curve:

= (1)
where:

y = lateral deflection of the tree, inches

x = vertical position along the tree, dinches
M = bending moment, inch - pounds

E = modulus of elasticity, psi

4

I = moment of inertia, inches

D = column diameter, inches

The Wood Handbook (1974) contains Va]ues for modulus
of e]aSticity, E, for many species, including red alder,
Sitka spruce and western hemlock. However, the values are
determined from tests on small, clear, straight-grained
specimens.

- The first objective of this study was to determine if
the Wood Handbook values for modulus of elasticity could be
used in predicting allowable cable 1loadings for support

trees.
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The moment of idnertia, I, for a column of constant
circular cross-section is easily calculated; however, trees
have a varying cross-section due to taper, so the second
objective of this study was to determine mathematical
relationships for moment of inertia as a function of height
for all three species.

One requirement for a solution to EQ (1) is a set of
known boundary conditidns. The neceésary boundary
condition at the base of the tree is that the moment at the
base of the tree be equal to the rotation of the base of
the tree times the base stiffness of the tree. The third
objective of this study was to determine values of base
stiffness for alder, spruce and hemlock.

Once the values for modulus of elasticity, base
stiffness, and moment of inertia were obtained, we would be
able to achieve the fourth objective of evaluating the
capacity of alder, spruce and hemlock support trees. This
would also allow comparison with Douglas-fir.

The scope of the.ana1yses and results presented in this
paper is Timited. A two dimensional tail tree model with
one guyline 1is used to calculate combined stress. A1l
calculations are assumed tc be within the elastic Timits of
the trees and cables. The effects of Toad eccentricity are

not included, nor are the effects of tree lean.



Summary of Objectives

Determine values for modulus of elasticity.
Develop relationships for moment of inertia a§
functions of height.

Determine base stiffness values.

Evaluate the capacity of alder, spruce and hemlock
to support cable loadings.

Compare alder, spruce and hemlock support

capacities to Douglas-fir.



III. FIELD STuDY
A. Study Sites

Trees were studied in two areas, both on the Hebo
Ranger District, Siuslaw National Forest, in the Coast
Range of northwest Oregon.

The alder site was at about 1500 feet elevation on the
west side of Mt. Hebo. Most of Mt. Hebo burned in the
early 1900's, and Targe tracts of alder are present.

Six alder trees were studied in a small flat about 1/2
acre in size, located at the base of a small ridge. The
trees were Jocated on a well-drained area, although a wet
depression was located within 70 feet of tested trees.

Diameters at breast height ranged from 14.2" to 26.5",
and all trees were about 100 feet tall.

Trees were chosen to obtain a good range in diameters,
and have the outward appearance of soundness. However, the
trees were not perfect. They all had some lean, ranging
from 0.29° to 7.61° (0.5% to 13.4%) from vertical.

Tree 2, which was the Tlargest alder tested, had a fork
at the base, with a secondary bole 10" 1in diameter
extending to about 70 feet in height, and Tree 6 had an old
wound in 1its base, in addition to a more recent wound which

appeared to have been caused during road construction.



The study was conducted from June 18 to July 5, 1984,
and weather conditions ranged from sunny and warm to steady
downpour.

The hemlock/spruce study area was Tlocated within the
Cascade Head Experimental Forest, Jjust north of Lincoln
City, Oregon. Four hemlock ranging from 8.9 to 20 dnches
DBH, and four spruce with diameters from 11.1 to 19.2
inches were studied. Spruce heights ranged from 35 to 119
feet, and hemlock ranged from 60 to 115 feet.

These trees were more spatially separated than the

alder, and all were 1located on well-drained sites. They

10

were tested from July 9 to July 27, 1984. The weather was

mostly clear and sunny.

These trees also had some 1ean. Hemlock Tlean ranged
from 0 to 2.3° (4%), and spruce ranged from 0.7° to 3.8°
(1% to 7%) from the vertical.

B. Study Methods

Figure 3 shows the basic rigging configuration that
was used to obtain the needed data.

Survey targets were placed at 5-foot intervals

beginning at 5 feet. The highest pull heights were 32.5

feet for Alder #2, 35 feet for Hemlock #4, and 30 feet for.

Spruce #3. A11 the alder forked a few feet beyond the
heights at which they were rigged. For safety and practical

considerations, we did not go beyond the forks.
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Diameters and bark thickness were measured at each
target point on the alder and spruce to determine the
functioﬁs for moment of inertia. Outside diameter only was
measured on the hemlock, and a regression equation (Stuck
1974) was used to determine inside bark diameters.

The Toad line was placed at a height on the pull tree
such that the pull direction was horizontal.

The Tload was applied to the alder with a Skagit B20F
drum set, and was applied to the spruce and hemlock with a
hand winch. The load was measured using an electric load
cell with a rated capacity of 10,000 pounds. The 1load
sensing element was a four-arm resistiVe strain gage
bridge. Bridge excitation and signal reading was done with
a Baldwin-Lima-Hamilton model 120 strain dindicator. Using
the model 120 strain dindicator, the maximum theoretical
resolution of the 1load <cell was 10 pounds.  Repeated
readings at constant load however, show that the measuring
system was only accurate to about 30 pounds.

At least three 1loads were applied to each tree, in
each of three directions.

As previously mentioned, virtually all the trees had
some lean. To determine the effects of Tlean, if any, on
the structural properties, a set of three Tloads wés applied
in the direction of lean, a set against the lean, and a set

at a right angle to the Tean (not in any particular order).

12



Lateral deflections of the survey targets were
measured with a Wild T-2 theodolite. Unloaded readings were
recorded for each target while the load Tline was slack. A
load would then be applied and held constant while the
loaded deflection angles were recorded. The difference
between the readings was the total deflection at a given
height and 1load, due to both bending and rotation at the
base. This data would be used in the modulus of elasticity
calculations.

A dumpy 1level was attached to the base of the test
tree as close to the ground as possible, its 1line of site
parallel to the pull direction; It was assumed that no
bending occurred at the base of the tree, so that the
difference between the loaded and unloaded 1éve1 rod
readings was the amount of base rotation for a given load.
The base rotation data would be used both in the modulus
and base stiffness calculations.

We were also interested in the effect that Toad height
might have on base stiffness. After a tree had been pulled
in all three directions, the direction which had the most
rotation per foot-pound of applied moment, i.e. the weakest
direction, was determined. The 1load Tline was then moved
down the tree to a target approximately 3/4 of the original
load height, and three new TJloads were applied 1in the

weakest direction.

13



The Tlargest of the new loads applied 1in the weakest
direction was designed to yield the same moment about the
basé of the tree as the maximum load at the upper height
had. For example, let's assume the maximum Toad applied at
30 feet had been 1,500 pounds (a base moment of 45,000
foot-pounds). The load point would be moved down to 20
feet, about 3/4 of 30 feet, and three new loads would be
applied, the largest of which would be about 2,250 pounds,
which would yield a base moment of 45,000 pounds. The 1load
point would then be moved down to 10 feet and three
additional loads would be applied.
| After each set of feadings were taken, both at the
upper and lower Tload heights, the load Tine was slacked and
the unloaded theodolite and level rod readings were again
recorded.

A major objective in the festing was to app]y‘1oads
that would create deflections the instruments were capable
of measuring, but not to apply 1loads Tlarge enough to
displace the roots. In other words, we wanted to determine
the structural properties within the =elastic range .of
behavior.

Any significant difference_ between wunloaded readings
before tésting and unloaded readings after testing would

indicate the elastic T1imit had been exceeded.

14
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Iv. RESULTS

A. Moment of Inertia

Moment of idinertia, I, as a function of height was
needed for the modulus of elasticity, bending and buckling

calculations. For solid circular columns,

1TD4

64

ATthough trees are not perfectly circular, they were
assumed to be for the purposes of this project. Diameter (D)
was taken to be the inside bark diameter. It is assumed that
the  bark does not significént]y contribute to the
structural properties of a tree.

1. Alder Moment of Inertia

Figure 4 shows the plots of moment of dinertia versus
height for alder, and it can be seen that alder does not
have uniform taper. Diameter measurements below 5 feet were
stopped when the diameter tape failed to make continuous
contact with the tree because of flutes.

'Idea11y, we would 1like to normalize the values for
moment of 1inertia, so that we could get a good idea about
its value at any heignt on a tree by making a single

measurement rather than having to make many measurements.
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Pyles (1984) was able to normalize the moments of
inertia at given heights (Ih) on Douglas-fir by dividing the
values calculated from measured diameters for a given tree,
by the moment of inertia at 5 feet (I5) for that tree. He
fit the values of the ratios to an equation of the form

b

Ih/15 = ahv. Then, by simply measuring a tree's diameter at

5 feet, calculating the moment of inertija (I5), and
multiplying I5 by ahb, a good estimate of the moment of
inertia (Ih) at any height h could be obtained.

Several methods were tried to normalize the values of
Ih for alder, but because of the wide variatien in values,
no method could be found to adequately reduce the scatter.
However, for the bending and buckling <calculations, a
function for moment of inertia had to be developed. This is
because most methods used for calculating bending stresses
and buckling loads for tapered columns break them into many
segments, and values for moment of inertia are needed for
each of the segments.

What was needed, from the engineering standpoint, was a
conservative function--one that we were reasonably certain
would not overpredict resistance to bending.

It was decided that a function of the fofm Ih/I5 =
f{height) would be the most practical because moment of

r

dinertia at 5 feet (I5) can be readily determined. Figure 5
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displays the plots of Ih/I5 versus height for the six alder.
The data 1ines for 2all trees pass through 1 at 5 feet
because I5/I5 = 1.

Also plotted in Fiqure 5 are four curves; the
explanation of each follows. To graphically convey a picture
of how moment of dinertia varies with height, height has been
plotted on the ordinate. It is pointed out that height is
the independent variable.

Y - this is the Teast squares regression line (point
estimator) of the mean response of Ih/I5 given a
value of height. The R? value is 0.82.

.95 CI - this is the Tower 95% confidence interval(CI) for
the mean response (Y) 1line. A transformation
(Appendix A) analogous to forcing a regression
line through the origin, was made to force the Y
and CI Tines through the point (5,1). This was
desirable because:

1) physically, the Tine has to go through the
point, je. I5/I5 will always equal 1, and

2) moving the Tine to the Teft would cause an
unnecessary loss in moment of inertia in the
Tower portion of the trees, with an
accompanying loss of bending resistance.

.95 PI - this is the Tower 95% prediction interval for an
individual outcome of Ih/I5 given a value for
height. Note that this line does not go through
the point (5,1) as we know it should. A
statistically based method for forcing a
prediction Tine through a point was not found.

Since we wanted a function to determine new values for

Ih/I5 given a value of height, a prediction Tine seemed 1in
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order. However, the method for determining its location did
not recognize the physical reality that Ih/I5 will always
equal 1 when h = 5,

Therefore, we were faced with the choice of using an
accepted statistical method, based on probability, that did
not represent physical reality, or of using an alternative
method based on judgement.

The fourth curve in Figure 5, Tabeled J is of identical
form as the .95 ClI, except that the value of 8 was
substituted for the 95% t -value of 2.712 (2-tail, 38
degrees of freedom).

From 15 feet up, only 1 data point 1lies within the .95
PI that is not within J. A total of 5 data points out of 39
(13%) fall outside the J 1line. It was felt this function
represented a conservative estimator of Ih/I5 and met
physical reality, so it was used in the tail tree analysis.

While statistica1 tools were used to determine the
location of the J 1ine, and as such it 1is a repeatable
process, no statistical signifitance can be attached to its
location. Its Tocation is based on judgement.

2. Hemlock Moment of Inertia

Hemlock had more wuniform taper than alder. For the
modulus calculations, power curves were fit to each tree
using the Teast squares method. Figure 6 displays the values

of Ih/I5 for the four trees.
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As was done for alder, a mean regression line was fit
to the data through (5,1), with an R? = .88. The lower 99%
expected value Tline (.99 CI) is also shown on Figure 6, and
is the function used in the tail tree analysis.

3. Spruce Moment of Inertia

The Ih/I5 Tines for spruce are plotted 1in Figure 7.
Tree 1, a 9.9", 15 foot tree, was dropped from the moment of
inertia analysis because of highly abnormal form. The mean
jine (?) is shifted to the Teft side of the plotted data as
a result of forcing it through (5,1), and has an R? of only
0.66. The R* could be increased by not forcing the 1ine
through (5,1), but this would yield a function not
representative of physical realities. The lower 99%
expacted value 1ine (.99 CI) was used in the tail tree

analysis.
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B. Modulus of Elasticity

The total lateral deflection measured for a given load
at a given height is the sum of two components:
1. the component due to rotation of the ftree about
its base, and

2. the component due to bending of the tree.

To calculate the modulus of elasticity, it  was
necessary to determine what portion of the Tateral
deflection measured with the theodolite at a‘given target

By measuring the base rotation with the dumpy 1level,
the tree's rotation angle, 90, was known. Multiplying the
tangent of 60 by a given target's height (h) yielded the
amount of deflection at that height due to base rotation,
Yb. Subtracting this value from the total deflection
measured at the'height, Y, yielded the amount of deflection
the point due to bending, Yc‘ These relationships are
illustrated in Figure 8.

Pyles (1984) developed *two methods for <calculating

modulus of elasticity, both of which were wused in this

study.
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The first method allows one to calculate the modulus
over segments of the test tree. This was the only method

used on the alder. The relationship is:

P (L-h) ah (4.12, Pyles)

ahb AB

E =

where: E = modulus of elasticity, psi

P = the applied load, pounds

The divisor portion, ahb, represents a power function
fit to each tree for moment of inertia at height, h. Because
of the nonuniformity of taper, which caused wide variation
in moment of dinertia, it was decided to obtain the values of
moment of inertia for the alder modulus calculations by
averaging the measured diameters over each section, and
using the relation I == D4/64. Appendix B displays how the
variables in EQ. 4.12 are calculated for a tree section
after the deflection due to base rotation has been
subtracted.

The second method for <calculating E is based on
integration, and would allow <calculation of one modulus
value for a tree over its entire length. The relation is:

p |Lpl-b+l) h(-b*2)

E = - (4.15, Pyles)
pa | -b+l ~b+2
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where: a,b = regression coefficients
from each tree's function for
moment of dinertia at height h,

Ih = ahb

Because of the sensitivity of the deflection
measurements to small breezes, and because of the Timited
number of trees sampled, it was decided that values of
modulus would be calculated over 10 foot segments with
EQ. 4.15, as was done with EQ. 4.12. Therefore, the
remaining variables are the same as defined in Appendix B

except that 8= ( 0, + 62)/2.

1. Alder Modulus

The Wood Handbook (1974) 1ists an average green wood
modulus value for red alder of 1,170,000 psi.

Calculated values for modulus varied greatly in this
study. One reason was that even slight breezes made it
difficult to accurately record deflections with the
theodolite.

Extremely Tlarge values such as 20,000,000 psi, or
negative values for modulus were removed from the set of
calcutated values as being unrealistic.

The average of all remaining calculated values for
alder modulus (114 in all) was 1,308,000 psi, with a

standard deviation of 955,000 psi (Table 1). The average is



TABLE 1. Alder

Maximum Varijation

Modulus of Elasticity (E) Results

28

Coefficient

of E for Interval Sample Mean Standard of

Method and Direction Size Value(psi) Deviation(psi) Varjation
EQ 4.12 None 114 1,308,000 955,000 .73
50% 52 1,051,000 500,000 .48
30% 34 1,156,000 528,000 .46

Note: Wood Handbook (1978) average value for green alder, E =1,170,000 psi
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only 12% Tlarger than the published average value of
1,170,000 psi, but the coefficient of variation {(ratio of
standardrdeviation to the mean) is 73%. The Wood Handbook
(1974) 1ists an average coefficient of variation of 22% for
green wood from approximately 50 species. The alder's
coefficient of variation is so high because the 114 modulus
values ranged from 300,000 to 6,000,000 psi.

One could argue that a value for alder modulus of
6,000,000 péj is unreasonable, and throw it out, but this
involves judgment, which becomes more difficult to apply as
values approach the published value. Therefore, an impartial

method for selecting "in and "out" modulus values to be
included in the average was desired.

Recall that three loads were appliied to each tree-in
each of three directions, allowing calculation of nine
values of modulus for each 5-foot segment. Because of out-
of -roundness of the trees, the moment of inertja, i.e.
resistance to bending, was probably different in different
directions. Therefore, we could expect differences in the
values of modulus calculated for the same tree segment,
depending on the direction pulled.

However, we should expect the values of modulus to bse
approximately the .same for three loads on the same segment

in the same direction. Large differences would indicate

measurement errors.
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To eliminate modulus values with measurement errors,
the range from Towest value to highest value of modulus was
limited to a 50% difference for each segment and pull
direction. If the maximum value of modulus was more than 50%
greater than the minimum value for a given segment and
direction, then all values for that segment were eliminated
from the data set. _

This reduced the number of "in" modulus values from 114
to 52 (Table 1). The resulting average value for modulus was
1,051,000 psi (10% 1less than the published value), with a
standard deviation of 500,000 psi. This reduced the
coefficient of variation from 73% to 48%, which dis still
quite high.

The maximum range from Tlow to high values was then
restricted to 30%. This reduced fhe number of "in" values to
34, with an average modulus of 1,156,000 psi, a standard
deviation of 528,000 psi, and a coefficient of variation of
46%.

Further screening of the calculated values would not
decrease the coefficient of variation. Shortly, we'll see
that the average values for alder modulus had more variation
than hemlock or spruce. This is because alder is generally
a rougher tree in terms of cross section, which means more
variation in moment of 1inertia, hence more variation in the

caluclated modulus values.
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However, it appears the Wood Handbook's average modulus
value of 1,170,000 psi, which 1is essentially equal to the
final field value calculated, is a good value to use in the

bending and buckling calculations.

2. Hemlock Modulus

Since good relationships for Ih/I5 for were developed
for hemlock, EQ. 4.15 could be used to calculate the modulus
values. To compare the methods, modulus values were also
calculated using EQ. 4.12. The results are summarized in
Table 2.

The Wood Handbook (1974) 1ists an average green wood
modulus for hemlock of 1,310,000 psi. In this case,
EQ. 4.15 yields Tlarger values for modulus than EQ. 4.12, but
its values have less variation. The values calculated with
EQ. 4.12 fluctuated too much to go below the 20% Timit on
variation.

An unpaired t-test was done on the mean values of
1,810,000 psi and 1,432,000 psi. The values are
significantly different at the .05 Tevel.

We can't conclude that one method 1is better or yields
answers closer to the "true" value for the tree's modulus,
but we can say that the published mean value of 1,310,000
péi appears to be conservative, and it will be used for the

hemlock modulus in the bending calculations.



TABLE 2.

Maximum Variation

Hemlock Modulus of Elasticity (E) Results

Coefficient
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of E for Interval Sample Mean Standard of

Method and Direction Size Value(psi) Deviation(psi) Variation

EQ 4.15 30% 63 - 1,810,000 445,000 .25

EQ 4.12 30% 20 1,539,000 450,000 .29

EQ 4.15 20% 63 1,810,000%* 445,000 .25

EQ 4.12 20% 12 1,432,000* 443,000 .31

EQ0 4.15 10% 48 1,771,090 396,000 .22

EQ 4.15 5% 32 1,738,000 331,000 .19

Note: Wood Handbook (1974) average value for green, western hemlock, E = 1,310,000 psi.

*These means are significantly different at the

.05 level.

difference between the other two pairs of means was not tested.

Significance of the
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3. Spruce Modulus

The Wood Handbook (1974) Tists an average green Sitka
spruce modulus value of 1,230,000 psi. Table 3 summarizes
the values obtained by the method of EQ. 4.15.

It appears the published value, which is 1% larger than
the final field value of 1,222,000 psi, is a good value to

use in the bending and buckling calculations.

C. Base Stiffness

To determine Tload bearing capacity, base stiffness
values are needed. The end condition for the base of a tree
is somewhere between pinned (free to rotate) and fixed
(infinitely stiff). Fiqure 9 dillustrates how such a system
might be modeled.

A pin is shown at the bottom, but a spring of stiffness
K is attached at the rotation point. The stiffness could be
variable with rotation, or constant. A constant stiffness is
defined in units of end moment per unit of angular rotation,
ie. K = 10 ft-kips/degree means it would take 10,000 foot-
pounds of moment to rotate the base one degree. The work
presented here considers the value of K to be constant over

its elastic range of behavior.



TABLE 3. Spruce Modulus of Elasticity (E) Results

Maximum Variation

Coefficient
of E for Interval Sampie Mean Standard of
Method and Direction Size Value(psi) Deviation(psi) Variation
EQ 4.15 25% 64 1,239,000 418,000 .34
15% 61 1,241,000 428,000 .34
10% 52 1,222,000 412,000 .34

Note: Wood Handbook (1974) average value for green Sitka spruce, E = 1,230,000 psi
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Figure 9.
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Base stiffness values were determined by multiplying
loads (P) by the height they were applied (L), and dividing
the product by the number of degrees the base rotated (eo),
which was measured with the leveling rod.

Three loads were applied in each direction at each 1load
height. If the applied Tloads were within the range of
linear, elastic behavﬁor, the three data points would form
a line starting at zero, with a constant slope (stiffness)

K. The theoretical relationship is:

=
[}

K (eo) (4.16, Pyles)

where: M base moment, ft-kips

-~
1]

base stiffness, ft-kips/degree

)

o degrees of base rotation.

The relationship is displayed in Figure 10a. The field
data, plus one known value of (0,0) were fit to straight
~Tines wusing the TJeast squares method. The form of the

equations was:

M = K (eo) + MO (4.17, Pyles)

where the variables are defined for EQ. 4.16, and M0 is
the moment intercept. The relationship 1is displayed in

Figure 10b.
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1. Alder Base Stiffness

The computed values for alder are displayed in
Table 4.

As evidenced by the high values for Rz, we see the
values of K are fairly Tinear and therefore constant for a
given direction.

However, we aTso see variation in the values of K for
each tree. The Tlargest difference from low to high K is
found for Tree 3, which has a 225% difference (71.41 to
232.34 ft-kips/degree). The- lowest range is found in
Tree 5, with a difference of 21% from low to high K.

A reason why base stiffness would vary with pull
direction has not been found. The following possible causes
were evaluated:

1. The strongest direction could be in the direction
of prevailing winds. Azimuths of pull direction were
recorded, and highest K values were spread throughout the
four quadrants.

2. The highest K for a tree could be related to the
direction which had the highest (or Tlowest) maximum base
moment applied. No relationship was apparent.

3. The variation of K could be related to the amount
of lean. Tree 5 had the greatest amount of 1lean from
vertical (7.61°), and had the 1least variation in base
stiffness. Tree 3 was second 1in terms of lean (6.3°) and

had the most variation in K.



TABLE 4. Alder Base Stiffness Yalues

Tree # With Lean Against Lean Right Angle to Lean
(DIB 5 ft) K* Mo*¥ R? K* Mo** R2 K* Mo** RT
Tree 1 202.74 2.75 .99 191.05 4.24 .98 291.16 4.0 .987
(19*)

Tree 2 425.03 6.32 .99 513.57 1.88 .99 279.30 12.32 .97
(25.1")

Tree 3 71.41 9.32 .96 108.97 3.30 .99 232.34 1.44 .99
(16.3")

Tree 4 152.31 -.08 1.00 114.53 .59 1.00 178.21 1.42 .99
(17.0™)

Tree § 65.66 .80 1.00 79.31 -.39 .98 79.35 .53 1.00
(12.8") :

Tree 6 47.61 -.22 1.00 49.39 1.06 .99 91.84 -.5 1.00
(14.3")

* (ft-kips/degree)
**  (ft-kips)
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4. The highest or Towest value of K could be related
to the order in which the direction was pulled. The highest
value of K for a tree was never in the first direction
pulled, and the Towest value of K was never in the direction
pulled Tast.

5. The variation in K <could be related to tree
diameter. No re]atfonship was observed between variation and
increasing or decreasing tree diameter.

Non-zero values for M0 are indicative of measurement
errors. Some of the values for M0 appear Tlarge, considering
the theoretical value 1is zero. However, all of the values
of M0 are less than 10% of the maximum base moment that was
applied in the given direction, and in~that_context are not
considered Tlarge (Figure 10b). For example, Tree 3, with
lean, has an M0 of 9.32 ft-Kips, but the maximum base moment
that was applied in this direction was 102 ft-kips; hence M0
is only 9% of the maximum applied moment.

For buckling and bending calculations, a function that.
relates base stiffness. to tree size is needed. Pyles (1984)
developed Tlinear, exponential and power functions for
Douglas-fir base stiffness as a function of diameter inside
bark at five feet height (DIB at 5 ft). He determined that a
power function made the most physical sense, because it

yields a base stiffness of zero for zero diameter.



41

The values of base stiffness (K) for alder from
Table 4 are plotted versus DIB at 5 ft in Figure 11. Also
plotted are power functions of the form K = a (DIB)b. The
middle curve was fit tc all values of K, the upper curve to
the highest value of K for each tree, and the bottom curve
to the lowest value of K for each tree.

Since there was a great deal of varijation in the range

of K for each tree, the bottom curve will be used din the

tail tree analyses.

Hemlock Base Stiffness

| As was done for alder, the base moment and base
rotation values were fit to lines of the form M = K (eo) +
Mo’ and the regression values are displayed in Table 5.

The high R?* values 1indicate the applied Tloads were
within a linearly elastic range of behavior. The Tlargest
value of MO was small compared to the applied moments, being
only 7% of the maximum base moment applied in that
direction.

Again base stiffness varies for each tree, though not
as much as alder on a‘percentage basis. The reason(s) for
the variation are not apparent, although pull azimuths were
not recorded for hemlock.

The values of base stiffness versus DIB at 5 ft are

plotted in Figure 12. To be conservative, the Towest curve

will be used in the tailtree analyses.
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Figure 11. Alder Base Stiffness as a Function of Tree
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TABLE 5. Hemlock Base Stiffness Values

Tree § With Lean Against Lean Right Angle to Lean
(DIB 5 ft) K* Mo** R? K* Mo** R? K* Mo** R?
Tree 1 53.70 43 1.00 73.16 0.67 1.00 112.79 68 1.00
(12.6")

Tree 2 69.56 3.20 98 83.64 92 1.00 94 .24 2.09 99
(14.3")

Tree 3 12.78 .51 .99 14.45 .59 .99 17.41 1.04 .98
(7.5")

Tree 4 238.02 1.10 1.00 248.97 2.64 .99 267.75 2.45 .99
(16.1")

*  (ft-kxips/degree)
*% (ft-kips)
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Spruce Base Stiffness

Fitted values for M = K (6. ) + M_ are displayed 1in

0

Table 6. Variation in values of K for each tree is somewhat
larger than for hemlock, but Tess than for alder. For the
most part it appears as though a Tlinear model does
adequately represent base moment as a function of base
rotation.

As was done for hemlock and alder, values of K were fit
to curves of the form K = a(DIB)?, which are shown in Figure
13. Again the lowest curve will be used in the calculations.
It is noted that the Tlocation of the curves was heavily
influenced by the 18.3 dinch tree. When later attempting to
pull dits stump, it was Tlearned that its root system was
heavily entwined with the root system of an adjacent tree.
Therefore, its stiffness may not be typical for other trees

of its size.

Base Stiffness Related to Load Height

As stated in Study Methods, we were also interested in
the relationship between base stiffness and the height of
applied load.

Separate studies of Douglas-fir base stiffness reported
by Pyles (1984) and Stoupa (1984) determined different
values. Stoupa's work with stumps yielded a higher value -
for base stiffness than did Pyles' work on support trees, on

whose methods most of this paper 1is based.



TABLE 6. Spruce Base Stiffness Values

Tree # Right Angle to Lean With Lean Against Lean
(DIB 5 ft) K* Mo** R? K* Mo** R? K* Mo** R?
Tree 1 18.20 99 98 7.51 1.84 93 8.49 50 98
(9.9")
Tree 2 25.02 7.16 89 17.62 7.65 87 20.68 1.2¢9 99
(12.7*)
Tree 3 22.0¢4 7.74 92 46.1 81 1.00 41.68 2.12 99
(14.4")
Tree 4 347.03 .85 1.00 243.84 -.15 1.00 297.15 .46 1.00
(18.3")

* (ft-kips/degree)
** (ft-kips)
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If the model pictured in Figure 9 dis a good represen-
tation of how the system operates, then moving the 1load
point down the tree should yield the same value of K in the
same direction.

The values of base stiffness for alder for differing
heights are shown in Table 7. A definite trend of increasing
base stiffness with decreasing Tload height is seen.

A11 trees had base stiffness values for 15-foot 1load
heights. To put all values on an equal basis, they were
normalized by dividing the pull heights by 15 feet, and the
base stiffnesses at each height by the base stiffnesses at
15 feet. The normalized values were fit to a straight Tine
of the form: |

Pull height K {(pull height)

= a + b
15 ft K (15 feet)

where a and b are regression constants,

a = 4.57
b = -3.554
Rz = .81

The data for alder suggests there may be a relationship
between base stiffness and load height.

The effect of 1load height on spruce and hemlock base
stiffness is inconclusive. The values are shown in Table 8.
Base stiffness decreases with 1load height for Spruce 1 and

2, and generally dincreases for 3 and 4.



TABLE 7. Alder Base Stiffness Values for Decreasing Load Heights

Tree 2, Right Angle Pull

Tree3, Pull with Lean

Tree 4, Pull Against Lean

Load Height (ft)

K(ft-kips/degree)

Mo(ft-kips)

1

Tree 5, Pull with Lean

Tree 6, Pull with Lean

32.5
25
15

27.5
20
15

22.5
15
10

22.5
15
10

20
15
10

1/ Insufficient data was taken for Tree 1.

279.
306.
381.

71.
97.
101.

114.
125.
125.

65..
66.
71.

a7.
53.
56.

3
48
28

41
61
16

53
88
06

66
08
95

61
81
66

12.
-5,
1.

9.
1.
1.

32
01
66

32
34
58

.59
.03
.59

.80
.81
.40

.22
.20
.14
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TABLE 8. Spruce amd Hemlock Base Stiffness Values for
Decreasing Load Heights

Spruce
Load Height (ft) K(ft-kips/degree) Mo(ft-kips)
Tree 1, Pull With Lean 15 7.51 1.84
10 6.73 .20
5 5.43 .98
Tree 2, Pull with Lean 25 17.62 7.65
20 14.25 1.55
15 12.62 2.53
Tree 3, Right Angle Pull 30 22.04 7.74
25 23.73 1.84
20 26.88 .71
Tree 4, Pull With Lean 25 243.84 -.15
20 240.8 . .53
15 269.27 1.46
Hemlock
Tree 1, Pull with Lean 25 53.7 .43
20 55.57 .69
15 57.87 1.18
Tree 2, Pull with Lean 30 69.56 3.2
20 54.41 2.55
10 58.55 1.17
Tree 3, Pull Against Lean 15 14.45 .59
10 14.43 .71
5 12.42 .55
Tree 4, Pull Against Lean 35 248.97 2.64
27.5 245.82 1.78

20 277.03 2.46




51

Base stiffness increases with decreasing load height in
Hemlock 1, generally decreases with Toad height in Hemlocks

2 and 3, and shows no pattern in Hemlock 4.
D. Tail Tree Analysis

The Euler equation 1is commonly wused to calculate
critical buckling 1loads, hence maximum cable Tloadings for
tail trees. As pointed out by Pyles (1984) and Sessions,
Pyles and Mann (1985), such use of the Euler equation is
inappropriate.

Tail tree rigging configurations violate several of the
assumptions dimplicit in use of the Euler equation. Some of

the conditions required for its use are:

1) That we are dealing with a long, slender column, -
meaning a slenderness ratio greater than about 150.
This translates to a rigging height about 38 times the
column's diameter. For example, a 20-inch diameter
column would have to be rigged to a height of abouf 63

feet for buckling to be the expected failure mode.

2) The column is 1initially straight and remains so
with idincreasing axial 1load. This condition 1is most
likely never met. Even 4 guylines cannot prevent
deflection of the tree toward the yarder as skyline

tension 1is applied.
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3) The Tline of action of the load is colinear with the
vertical axis of the column. This condition also is
probably never met, as the skyline, when run through a
block hung on the side of the tree, transmits a Tload
that 1is several 1inches from the center of the tree's

cross section.

The method of analysis to be used in this paper will be
that proposed by Sessions, Pyles and Mann (1985). This
method considers tail tree failure to be a result of
combined axial and bending .stresses rather than due to
buckling. The effects of eccentricity of the Toad (item 3
above) are not included.

To calculate the combined axial and bending stresses 1in
a tail tree, it 1is first necessary to solve the general
relationship between bending moment and deflection for an
elastic curve:

d2y M

> = (2, Sessions, et al.)
dx EI

where:
Y = transverse deflection of the member, inches
X = Tongitudinal position along member, inches
M = modulus of elasticity, psi

I = moment of inertia, inches4
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Figure 14a illustrates a two-dimensional case with a

single quyline. Equation (2) can be rewritten as follows: -

d%y H(1-x) + P(y)
5 = (7, Sessions, et al.)
dx EI
where:
H = horizontal force on the tail tree, pounds
P = vertical load on the tail tree, pounds
1 = Tength of member between Toad and base, inches

X, y as defined above.

Because the moment of dnertia, I, varies over the
length of the tree, a numerical technique is the most direct
method for solution of EQ. 7.

A solution to EQ. 7 must be compatible with the
following:

1) the reaction at the base of the tree,
M

base
Kbase =7;————— (8, Sessions, et al.)
base
where: Kbase = base stiffness value, ft-kips/degree
= I
Mbase moment at base of tree, ft-kips
ebase = rotation at base of tree, degrees

2) the reaction at the top of the tree, as defined by
the stiffness of the guyline.



o4

Figure 14, Model for Combined Stress Calculations
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r

Once a solution to EQ. 7 has been found, the combined
(total) stress at any point along the tree, o,, can be

computed with the following equation:

P MXCx

0 = + (9, Sessions, et al.)
X
A I
X X

where:
o, = combined stress at point x, psi
P = vertical Toad on the tree, pounds
Ax = cross sectional area at point x, inches2
Mx = moment at point x, inch-pounds
Cx = radjus inside bark at point x, inches
Ix = moment of inertia at point x, inches4

As Sessions et al., point out, the Tlargest value of‘
combined stress will result from summing the axial and
bending stress components, ie. wusing the plus sign in
EQ. 9. It's also noted that the point of maximum stress
will not nécessari]y be at the base of the tree, because of
taper.

ATl the functions and values needed to <calculate
combined stress, 0, for alder, Sitka spruce and western
hemlock were determined in the previous sections.

Before beginning the calculations, some parameters had
to be established. The first of these to consider was what

upper value of combined stress would be used for analysis.
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The Wood Handbook (1974) 1ists average values for
maximum compression (crushing strength) parallel to grain.
It also reports an average coefficient of variation for
these values of 18% for 50 species. Since coefficient of
variation is a ratio of the standard deviation to the mean,
an estimate the standard deviation for a given species can
be made by multiplying its mean crushing strength by .18.

In keeping with the desire to make conservative
estimates of Tload bearing capacities, it was decided to
subtract 3 standard deviations from the mean values for
crushing strength. If the populations were normally
distributed, less than 1% of the samples tested would have
faifed at'that stress. The published maximum compressive
stresses and estimated lower 1imit values are displayed in
Table 9.

Referring to Figure 14a, the following variable values
were set for calculations for varying diameters:

a-guyline, a-skyline = 45°

guyline diameter = 3/4"

guyline metallic area = .262 in?

guyline unit weight = 1.04 1b/ft

initial Tower end quyline tension = 100 1b.

' guyline modulus of elasticity, E = 14,000,000 psi
load height, 1 = 30 ft.



TABLE 9.

Haximum Allowable Compressive Stress, LI Yalues

X 1
Mean Maximum

Compressive Stress Estimated Standard2 Mean Minus 3
Species Bx (psi) Deviation, s {psi) Standard Deviations {psi)
Red alder 2960 532.8 1360
Sitka spruce 2670 480.6 ’ 1228
Western hemlock 3360 604.8 ‘ 1546
1

Wood Handbook (197
parallel to grain.

2Average coefficien

Cy =

4). Values are for green wood, maximum crushing streagth

t of variation, cv, for 50 species = 0.18

s/ax = 0.18 , s = Bx (.18)
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A value for skyline angle, B, which would yield the
maximum combined stress per pound of skyline tension was
desired. Sample runs were made for an 18-inch (inside bark)
alder, and the results are displayed in Figure 15, At about
15° below horizontal (B8=75°) a given stress condition 1is
reached with the Towest amount of skyline tension.

A horizontal angle of (-)15 degrees was also found to
maximize stress per pound of skyline tension for spruce, but
(-)10 degrees (B = 800) was found to be "critical®™ for
hemlock.

Skyline angles below (-)30 degrees were not evaluated.
As the steepness of the skyline angle increases, the
resultant of the forces at the top of the tree rotates in a
clockwise directidn, and would eventually point toward the
rear of the tree. To simulate this condition, a front
guyline would be needed, and this has not yet been

incorporated in the model used in this study.



SKYLINE TENSION (KIPS)
FOR STRESS OF 1360 PSI

110 F

100
90
80

. .\. _—

60 1 1 1 i 1 1

-40 -30 -20 -10 0 10 20

SKYLINE ANGLE FROM HORIZ. (DEGREES)
18 IN. DIB ALDER

Figure 15. Skyline Tension to Allowable Stress in Alder for
Yarious Skyline Angles

30

59



60
1. Alder Analysis |

A plot of combined stress versus vertical 1load in an
18" DIB alder dis shown 1in Figure 16. The 100 pounds
pretension causes an initial stress of 47 psi. Stress
increases rapidly until about 2500 pounds of vertical Toad.
In this range, the "belly" of the guyline catenary is being
taken up as the top of the tree 1is deflected toward the
skyline, Figure 1l4a,b. After the guyline has tightened,
stress increases at a Tower rate.

If we define the maximum allowable stress at 1360 psi
(Table 9), we see the vertical component of the forces at
the top of the tree (P in equations 7 and 9) is about 82,500
pounds. For comparison, a critical buckling Toad, Pcr’ for
the tree was computed using fhe method presented by Pyles
(1984). The method allows calculation of critical buckling
loads for columns with varying moment of inertia, and given
base stiffness. The same moment of inertia and base
stiffness functions were used as in the bending
calculations, and the end conditions were pinned at the top,
restrained at the bottom. The value of Pcr was 398,700
pounds.

Assuming we would not want to exceed a normal stress of
1360 psi at the rigging height, where the diameter would
probably be the smallest, the maximum allowable vertical

load would have to be decreased from 398,700 to 199,600

pounds.
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In this case, when analyzing the tail tree in terms of
buckling, maximum axial stress Timits the vertical load, but
yields a value 142% Tlarger than the bending analysis
(199,600 pounds versus 82,500 pounds).

A buckling calculation was also done for a pinned-
pinned case, which yielded a critical buckling Tload of
233,700 pounds. Again, the maximum axial stress of 1360 psi
would be Timiting, and we would still predict a maximum
vertical load of 199,600 pounds.

In fairness to the buckling approach, it should be
noted that the criterion of a slenderness ratio greater than
150 is not met by the above example. If we assume an average
column diameter of 14.5", which is equal to thé diameter at
two-thirds the rigging height, the tree would have to be
rigged at 1least 46 feet up. It's doubtful any alder could
be rigged to a height that would meet the slenderness ratio
criterion, without going past a fork in the tree.

Sessions, Pyles and Mann (1985) compared the combined
stress approach to the Euler equation for a Douglas-fir
which did meet the slenderness ratio criterion. For an
assumed constant cross section, and varying end conditions,
they found that <critical buckling 1loads bracket maximum

allowable vertical Toad, as determined from combined stress.
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Figure 17 displays combined stress versus skyline
tension for the case we've been examining. It would take
about 57,500 pounds of skyline tension to create 1,360 psi
of combined stress. The point of maximum combined stress
would be 15 feet from the base of the tree.

Calculations of combined stress were also made for
other diameter classes within the size range that field data
was obtained, and the results are displayed in Figure 18.
As we would expect, the skyline tension required to reach a
given combined stress increases with diameter. To reach a
stress of 1,360 psi, about 51,000 pounds of skyline tension
would be required for a 14" DIB alder, whereas about 90,000
pounds would be required to cause the same stress condition
in a 26" DIB alder.

The values of skyline tension required to produce a
combined stress of 1360 psi are shown versus tree dijameter
in Figure 19. The plot suggests that for a given geometry,
pretension, etc., the relationship between skyline tension
and a given allowable stress condition may be a well defined

function of tree diameter.
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2. Spruce Analysis

Stress calculations were done for four diameter
classes. Input geometry, etc. was identical to alder,
except, of ~course, for the base stiffness, modulus of
elasticity, and moment of dinertia function. The plots of
total stress versus skyline tension are shown in Figure 20.

The 100 pounds of gquyline pretension in the 12-inch
spruce deflects the tree toward the guyline enough to cause
a combined stress of 170 psi. Once skyline tightening
begins, it takes about 8,000 pounds of tension to create the
same stress condition in the direction of the skyline.

Skyline tensions to the assumed maximum stress of 1228
psi versus diameter are -shown in Figure Z21. No inference
should be drawn about strength characteristics. beyond the
range displayed.

It is interesting to note that a 16-inch alder can
resist about 15% more skyline tension than a 16-inch spruce
(60.3 kips vs. 52.3 kips), before reaching its allowable

stress.
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3. Hemlock Analysis

As done for alder and spruce, stress calculations were
made for the same geometry, etc., except that a skyline
angle of 10° below horizontal was wused, as it maximized
stress per pound of skyline tension. Figure 22 displays
total stress versus skyline tension.

No plot of skyline tension to combined stress of 1546
psi is displayed. As there was only a 4-inch range in field
tested diameter <classes, it may seem trivial. However,
looking at the 16-inch class, with a sky1ine tension of
about 70,000 pounds to its maximum stress, hemlock appears
to be the strongest of the three species tested. The 16-
inch alder had a maximum tension of 60,300 pounds, and the

16-inch spruce a value of 52,300 pounds.
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4., Parameter Study

a. Modulus of Elasticity

Rather than wusing the published average Wood Handbook
(1974) values for moduli of elasticity, more conservative
estimates could have been made using the same method that
was used to establish maximum allowable compressive stress
values.

The Wood Handbook (1974) reported an average
coefficient of variation for modulus of elasticity of 22%,
for approximately 50 species tested. Using the coefficient
of variation to estimate the standard deviation for each
species, the assumption was made that 95% of the modulus
test values were within plus or minus 2 standard deviations
of the mean values. Combined stress calculations were made
for a 16 dinch tree of each species, using the upper and
Tower values for modulus of elasticity.

The upper, lower and mean values for modulus, and the
estimated standard deviations are shown 1in Table 10. The
upper and Tower values are all about 44% larger or smaller,
respectively, than the mean values.

Combined stress versus skyline tension curves for the
upper and Tlower alder modulus values, and for the mean

modulus are shown in Figure 23. As noted earlier, the
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TABLE 10. Alternative Values for Modulus of Elastic.ity

1 Lower Yalue Upper Value

Species Mean Estimated Standard2 (Mean Minus 2) (Mean Plus 2)
Modulus [psi) Deviation (psi) _ {Standard Deviations) (Standard Deviations)
Alder 1,170,000 257,400 665,200 1,684,800
Spruce 1,230,000 270,600 ) 688,800 1,771,200
Hemlock 1,310,000 288,200 733,600 1,886,400

1lulood Handbook (1974)

2Estimated from reported average coefficient of variation of 22%.
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calculations for mean modulus reached 1360 psi at about 60.3
kips of skyline tension.

The curve with the upper modulus value reached 1360 psi
of stress at about 54.4 kips of skyline tension, and the
curve with the Tower modulus reached the allowable stress at
about 63.5 kips.

Increasing the modulus value by 44% resulted in a 10%
decrease in skyline tension required to reach allowable
stress. Decreasing the modulus resulted in a 5% increase in
allowable skyline tension.

Figure 24 displays stress versus skyline tension curves
for varying spruce moduli. The skyline tensions to the
allowable stress of 1228 psi are 47.5 kips, 52;3 kipé and
54.7 kips for the upper, mean and Tlower modulus values,
respectively. The higher modulus reduced the allowable
skyline tension by 9%, and the Tower modulus added 5% to
allowable skyline tension.

Combined stress versus skyline tension for varying
hemlock moduli are shown 1in Figure 25{ The Toads to the
allowable stress of 1546 psi are 58.7 kips, 70.7 kips and
82.6 kips, respectively. The higher modulus reduced
allowable skyline tension by 17%, and the Tlower modulus
. increased allowable tension by 17%. It is noted that the
guyline stress for the reduced hemlock modulus calculations
would probably have exceeded the proportional Timit before

the tree had reached its allowable stress.
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In calculations with the mean modulus values, and
compressive stress values reduced by 3 standard deviations,
it has been assumed we have been operating within the
proportional Tlimits of the wood. The values of strain would
be .0012, .001 and .0012 for alder, spruce and hemlock,
respectively. Using the reduced moduli, the values of
strain would be .002 for all three. It is assumed we would
still be within the proportional Timits.

For the geometry, etc. analyzed, hemlock seemed to be
the most sensitive to changes in modulus of elasticity,
followed by alder and spruce. Considering that changes in
modulus on the order of 44% result in a maximum change of
17% in skyline tension to allowable stress, it appears that
combined stress calculations are not very sensitive to
modulus of elasticity.

b. Guyline Pretension

The effects of quyline pretension are of interest. ATl
previous calculations have been made with an initial 100
pounds of lower end tension in the quyline. Two additional
sets of calculations were made for a 16 inch DIB alder, one
with 50 pounds of pretension, and one with 150 pounds. The
resulting stress versus skyline tension curves, along with
the curve for 100 pounds of pretension are shown in

Figure 26.
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Immediately we see that with only 50 pounds of
pretension, stress increases rapidly in the tree while slack
in the guyline 1is being téken up. The skyline tensions
required to yield a stress of 1360 psi for the given
pretensions are: 50 1b - 31 kips, 100 1b - 60.5 kips, 150
1b - 67.5 kips. A 95% increase in maximum skyline tension
is obtained in going from 50 to 100 pounds of pretension.

c. Guyline Diameter

Previous ~calculations were made with a 3/4 dnch
guyline. An additional set was made for a 16 inch DIB alder
with a 5/8 inch guyline, and a set was made with a 7/8 inch
guyline. The results for the guyline sizes are diép]ayed in
Figure 27.

The amount of sag in the guyline idincreases with size
for the same value of pretension, so very 1little slack needs
to be taken wup in the 5/8 dinch T1line, and it is hore
effective in controlling stress during the beginning phase
of skyline tensioning.

As we might expect, increasing quyline size increases
the amount of skyline tension needed to create 1360 psi of
stress. However, we encounter diminishing returns very
rapidly. The skyline tensions to the assumed allowable
stress for the given line sizes are: 5/8 inch - 56.3 kips,

3/4 inch - 60.5 kips, 7/8 inch - 57.4 kips.
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d. Rigging Height

Figure 28 displays combined stress in a 16 inch DIB
hemlock versus skyline tension for the control height of 30
feet, and for heights of 25 and 35 feet. Increasing the
height from 30 to 35 feet results in a 4% reduction in
skyline tension (70.7 to 67.8 kips) to the allowable stress
of 1546 psi, and décreasing the height from 30 to 25 feet
results in a 2% dincrease in allowable skyline tension (70.7
to 72.4 kips).

Figure 29 shows stress in a 16 dinch DIB spruce for 25,
30 and 35 feet. Increasing height from 30 to 35 feet reduﬁes
skyline tension to the allowable stress of 1228 psi by 13%
(52.3 to 45.4 kips), and decreasing height from 30 to 25
feet increases allowable tension by 10% (52.3 to 57.7 kips).

Stress in a 16 inch DIB alder versus skyline tension
for varying heights dis shown in Figure 30. Increasing load
height from 30 to 35 feet decreases allowable skyline
tension by 11% (60.3 to 53.8 kips), and decreasing load
height from 30 to 25 feet increases allowable tension by 9%
(60.3 to 65.7 kips).

For the geometry and other set inputs, it appears that

hemlock is the least sensitive to changes in rigging height.



COMBINED STRESS (PSI)

2000

I
i
!

L
L

1600

1200

800

400

L 1 L 1 " 1 — 1 " L L Il n 1 A ny
a 20000 40000 650000 80000

SKYLINE TENSION (LBS)

Figure 28. Combined stress in a 16 Inch DIB Hemlock vs
Skyline Tension for Various Rigging Heights

83



o

COMBINED STRESS (PSI)

2000 -

1600

1200

400

A —_— I 1 s A i A A e a1l . A A 3
] 20000 10000 68008 goaaa

SKYLINE TENSION (LBS)

Figure 29. Combined stress in a 16 Inch DIB Spruce vs
Skyline Tension for Various Rigging Heights

84



COMBINED STRESS (PSI)

2000 -

1600

AN
8

1200

800
400
e N 1 I iN " — L i L 2 L L x J
a 20000 40000 50000 80000

SKYLINE TENSION (LBS)

Figure 30. Combined stress in a 16 Inch DIB Alder vs
Skyline Tension for Various Rigging Heights

85



5. Comparison with Douglas-fir

As mentioned in the introduction, the 0Oregon State
Safety Code (1984) says to add 2 inches to recommended
diameters for Douglas-fir tail +trees when wusing other
coniferous species.

At the end of Hemlock Analysis, the three species
tested were ranked according to the skyline tension required
to create the maximum allowable stress in a 16 inch tree.
The values were:

SKYLINE TENSION (1bs)
TO MAXIMUM ALLOWABLE

SPECIES STRESS
Hemlock 70,700
Alder 60,300
Spruce 52,300

A bending analysis was done for a 14 inch (inside bark)
Douglas-fir. The same geometry was used as for the other
species. A skyline angle of (-) 10 degrees (B = 80°) was
found to maximize stress per pound of skyline tension.

The Wood Handbook (1974) average, green wood modulus of
elasticity of 1,560,000 psi was used. A maximum allowable
stress of 1740 psi was calculated exactly as it was done for
the other species. The base stiffness and moment of inertia
functions for Douglas-fir were developed by Pyles (1984).

A plot of skyline tension versus combined stress for
the Douglas-fir is shown in Figure 31. Also shown are the

curves for the 16 inch alder, spruce and hemlock.
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The 14 inch Douglas-fir reaches its allowable stress of
1740 psi at about 65,000 pounds of skyline tension. The 16
inch hemlock reaches its maximum at 70,700 pounds, so the
State's recommendations may be slightly conservative for
hemlock.

The spruce reaches its maximum stress at 52,300 pounds.
Referring to Figure 21, it appears that even an 18 dnch
spruce could not withstand 65,000 pounds of skyline tension
without exceeding its maximum allowable stress.

Figure 19 1dindicates it would take an alder with an
inside bark diameter of just over 17 idinches to withstand
65,000 pounds of skyline tension.

The above comparisons are for a particular rigging
height, geometry, pretension, etc. The relationships

between the species may not be the same for all cases.
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V. SUMMARY

One objective of this study was to determine if the
published values for modulus of elasticity could be used to

predict cable loadings for red alder, Alnus rubra Bong.,

Sitka spruce, Picea sitchensis (Bong.) Carr, and western

hemlock, Tsuga heterophylla (Raf.) Sarg., support trees.

Field measurements indicated published values obtained from
tests on small wood specimens could be used. For the rigging
height and geometry evaluated, sensitivity analysis
indicates that a difference in modulus of plus or minus 44%
would affect 1oad bearing capacity by a maximum of 17%.

Base stiffness values were developed for each species.
A relatively 1large amount of variation was found with pull
direction, and it appears that base stiffness may increase
as load height decreases.

Normalized moment of dnertia functions were developed
for each species. A statistically based, repeatable
procedure for forcing regression and confidence interval
lines through a known point was documented.

Some of the violations inherent 1in analyzing support
trees in terms of buckling were reviewed, and a case was
analyzed wherein a buckling/axial stress analysis predicted
a significantly Tlarger allowable vertical 1load than did a

combined stress analysis.
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For the size classes and rigging height tested, alder

was found to be between hemlock and spruce 1in support

capacity. ATl three species are able to support relatively

high skyline tensions before reaching conservative estimates
of maximum combined stress.

The Tload bearing capacity of a 14 dinch DIB (diameter

inside bark) Douglas-fir, Pseudotsuga menziesii (Mirb.)

Franco, was compared to those of a 16 inch DIB alder, spruce
and hemlock. It was found that the 16 idinch DIB hemlock
could support about 9% more skyline tension to its allowable
stress than the 14 1inch Douglas-fir. An alder of at least
17 dinches DIB would be needed to support the same Tload as
the Douglas-fir, and a spruce with a DIB over 18 inches,
which dis outside the range of the field data, would be
needed.

The effect of tree 1lean on combined stress was not
determined. Any effects would probably vary with the
direction .of pull relative to the Tean. Intuitively, we
could expect an increase in combined stress for most cases.

The dimportance of quantifying the effects of all the
variables that make up a tail tree system was shown in the
Timited parameter analysis. Of the variables tested, guyline
pretension seemed to have the greatest effect on total

stress.
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VI. SUGGESTIONS FOR FURTHER RESEARCH

Values for base stiffness over a greater range in tree
diameters is needed for hemlock and spruce.

Base stiffness values for a greater range in stand
characteristics, topography, etc. are needed for all
species.

Better understanding of base stiffness variation with
pull direction is needed.

Final determination of the relationship between base
stiffness and load height should be made. If base
stiffness does increase with decreasing load height,
the importance to support capacity must be determined.
Values for stump pullout resistance need to be
determined for alder, hemlock and spruce.

The importance of the eccentricity of thé skyline load,
due to its application through a block on the side of
the tree, needs to be determined.

Inclusion of the effect of tree lean on support
capacity 1is needed.

Additional guylines must be included in the model to
more completely simulate actual support conditions.
Dynamic loads may affect tail tree support capacity,

and a study of the effects is in progress.
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APPENDIX A

Method for Forcing a Regression
Line Through a Point
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Reference:
Neter, J., W. Wasserman and M. Kutner.
Applied Linear Regression Models. Illinois:
Richard D. TIrwin, Inc., 1983. pp. 160-163.

Thé desire was to force a regression 1line of the
general form Y = xb, and also the lower Timit for expected
value through the same point.

More specifically, the dependent variable was the ratio

of moment of inertia at a given height, Ih, to the moment of

inertia at 5 feet height, I5. This ratio, Ih/I5 was to be a

function of height, h. The form of the equation was Ih/Ib5
hb, Logically, and physically Ih/I5 must equal 1 when h =5
feet, ie. I5/I5 will equal 1 for all trees.

Since we wanted to force the regfession Tine “through
the point (5,1), ide. at 5 feet Ih/I5 = 1, we set up a
program thét would minimize the sums of (Ih/I5-1)% and
(height-5)2.

A Tog transformation as follows is required to use the

least squares method for determining the b-coefficient:

if Th/I5 = hP

, then log (Ih/I%) = b Tog h
To force the regression line through (5,1), the
following relation was used:
X; was defined as log (hi) - log (5),

y; was defined as Tog (Ihi) - log (1),

and b was determined by:
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L XYy
b = — 5 (5.17 Neter, et al.)
I X,
i
/ xi(MSE)
the variance, S (Yi) =N ———— (5.17 Neter, et al.)
in
Z(Yi-bxi)2
where MSE = (5.17 Neter, et al.)
n-1

and finally the Tower 1imit for the prediction interval was
obtained by:
Y - t(s)(Yi)

where t is a 2-tail value with n-1 degrees of freedom.
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RET

285 11:21:12
--------------- PROGRAM "STATS" —-ccmmccac—ceaaaw

Farces line of the faorm lh/1%5=a(HEIGHT)"b
through the paoint (5,1)
where HEIGHT=S feet and [h/IS5=1

D T T B T

1 INPUT “ENTER FILE. NAME™" |
INPUT "ENTER THE NUMSER DF ROWS OF DATA",
$="ISDATA2"
=39
=3 I .95 t-value= 2,712
IM AC100),B8¢(100),X(100),Y(100>
SSIGN #1 TO “"PUGH/"RF'S$
FOR I=1 TO N
READ #1:A(1),B(I}
I PRINT ACII,BC(I)
NEXT I
FOR =1 TO N
X(I)=LOG(A(I))-LOG(5) I SETS HEIGHT ORIGIN AT S FEET
Y(I)=L0G(B(I))-LOG(1) ! SETS Th/I1% ORIGIN AT 1
Sumx=Sumx +X ()
Sumy=Sumy+Y (1)
Sumxsq=Sumxsq+X(1)"2
Sumvsq=3umvsqu(I)“2
ume-Sumxy'X(I)'Y(I)
NEX S (S *S N>
pPxy=Sumxy- (Sumx *Sumy/
SstSumxsz (Sumx“?/ﬂ?
Ssy-Sumus —(Sumyu™2/N)
Ssr=5px /9Ssx
R3essrsBeu { CALCS r~2
B=Sumxy/Sumxsaq ! CALCS b COFFICIENT

IPRINT  "p=";8b
FOR I=1 TO N

Sumdeuv=Sumdeuv+ (Y(1)-B#X(1))"2
NEXT 1

Mse=Sumdev/(N 1

Sb SQR(Mse/Sumxsq)
'B'B T#SH ! USE FOR LOWER LIMIT ON b

PRINT USING 382;FS$

IMRGE S5X,"FILE NAME [S",3X,10A
PRINT
FOR Ht=1 TQO 35
S=SOR((LOG(Ht)-LOG(5}) 2'Hse/Sumxsq) ! CALCS VARIANCE
Yhat=23#(LOG(Ht)-LOG(5)

%l-Yhat-T*S ! CALCS LOWER LIMIT

[

PPINT USING 440 ;Ht ,EXP(Yhat) EXP(L1

IMRGE SX ,"HT=" 2 D,5X."YHAT=" 0,60, 5X "LOWER LIMIT=" D,6D
NEXT Ht

PRINT
PP INT USING 480 B8,Mse , T ,Sumxsq.

R2
IMAGE 4X,"b=", [60, 3X "M3E=",0.80.4X,"t="0.50,3X,"SUM X~2=",3D.50,3X,

END

nRA
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APPENDIX B

Variables in Modulus of
Elasticity Calculations
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VARIABLES IN
MODULUS QF ELASTICITY CALCULATIONS

—>"
h1
ah h
v
h3 ——
L
h
TREE BASE —A—o A

Note: A1l deflections are those remaining after
base rotation has been subtracted.

D1=d1-d2 D2=d2-d3

H1=h1-h2 H2=h2-h3

$1=D1/H1 92=D2/H2
ah=h1-h2

086-61-82
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