38 research outputs found

    The ISO 170um Luminosity Function of Galaxies

    Full text link
    We constructed a local luminosity function (LF) of galaxies using a flux-limited sample (S_170 > 0.195Jy) of 55 galaxies at z < 0.3 taken from the ISO FIRBACK survey at 170um. The overall shape of the 170-um LF is found to be different from that of the total 60-um LF (Takeuchi et al. 2003): the bright end of the LF declines more steeply than that of the 60-um LF. This behavior is quantitatively similar to the LF of the cool subsample of the IRAS PSCz galaxies. We also estimated the strength of the evolution of the LF by assuming the pure luminosity evolution (PLE): L(z) \propto (1+z)^Q. We obtained Q=5.0^{+2.5}_{-0.5} which is similar to the value obtained by recent Spitzer observations, in spite of the limited sample size. Then, integrating over the 170-um LF, we obtained the local luminosity density at 170um, \rho_L(170um). A direct integration of the LF gives \rho_L(170um) = 1.1 \times 10^8 h Lsun Mpc^{-3}, whilst if we assume a strong PLE with Q=5, the value is 5.2 \times 10^7 h Lsun Mpc^{-3}. This is a considerable contribution to the local FIR luminosity density. By summing up with other available infrared data, we obtained the total dust luminosity density in the Local Universe, \rho_L(dust)=1.1 \times 10^8 h Lsun Mpc^{-3}. Using this value, we estimated the cosmic star formation rate (SFR) density hidden by dust in the Local Universe. We obtained \rho_SFR(dust) \simeq 1.1-1.2 h \times 10^{-2} Msun yr^{-1} Mpc^{-3}$, which means that 58.5% of the star formation is obscured by dust in the Local Universe.Comment: A&A in pres

    CMB: the isotropic part

    Get PDF

    The evolution of clusters in the CLEF cosmological simulation: X-ray structural and scaling properties

    Get PDF
    We present results from a study of the X-ray cluster population that forms within the CLEF cosmological hydrodynamics simulation, a large N-body/SPH simulation of the Lambda CDM cosmology with radiative cooling, star formation and feedback. The scaled projected temperature and entropy profiles at z=0 are in good agreement with recent high-quality observations of cool core clusters, suggesting that the simulation grossly follows the processes that structure the intracluster medium (ICM) in these objects. Cool cores are a ubiquitous phenomenon in the simulation at low and high redshift, regardless of a cluster's dynamical state. This is at odds with the observations and so suggests there is still a heating mechanism missing from the simulation. Using a simple, observable measure of the concentration of the ICM, which correlates with the apparent mass deposition rate in the cluster core, we find a large dispersion within regular clusters at low redshift, but this diminishes at higher redshift, where strong "cooling-flow" systems are absent in our simulation. Consequently, our results predict that the normalisation and scatter of the luminosity-temperature relation should decrease with redshift; if such behaviour turns out to be a correct representation of X-ray cluster evolution, it will have significant consequences for the number of clusters found at high redshift in X-ray flux-limited surveys.Comment: 20 pages, 21 figures, MNRAS, accepted with minor modifications to original manuscrip

    Cosmological Magnetogenesis driven by Radiation Pressure

    Full text link
    The origin of large scale cosmological magnetic fields remains a mystery, despite the continuous efforts devoted to that problem. We present a new model of magnetic field generation, based on local charge separation provided by an anisotropic and inhomogeneous radiation pressure. In the cosmological context, the processes we explore take place at the epoch of the reionisation of the Universe. Under simple assumptions, we obtain results (i) in terms of the order of magnitude of the field generated at large scales and (ii) in terms of its power spectrum. The amplitudes obtained (B ~ 8.10^(-6) micro-Gauss) are considerably higher than those obtained in usual magnetogenesis models and provide suitable seeds for amplification by adiabatic collapse and/or dynamo during structure formation.Comment: 9 pages, 2 figure

    Dusty Infrared Galaxies: Sources of the Cosmic Infrared Background

    Full text link
    The discovery of the Cosmic Infrared Background (CIB) in 1996, together with recent cosmological surveys from the mid-infrared to the millimeter have revolutionized our view of star formation at high redshifts. It has become clear, in the last decade, that a population of galaxies that radiate most of their power in the far-infrared (the so-called ``infrared galaxies'') contributes an important part of the whole galaxy build-up in the Universe. Since 1996, detailed (and often painful) investigations of the high-redshift infrared galaxies have resulted in the spectacular progress covered in this review. We outline the nature of the sources of the CIB including their star-formation rate, stellar and total mass, morphology, metallicity and clustering properties. We discuss their contribution to the stellar content of the Universe and their origin in the framework of the hierarchical growth of structures. We finally discuss open questions for a scenario of their evolution up to the present-day galaxies.Comment: To appear in Annual Reviews of Astronomy and Astrophysics, 2005, vol 43. 31 pages, 12 color figure
    corecore