6 research outputs found

    Reinitiation of protein synthesis in Escherichia coli can be induced by mRNA cis-elements unrelated to canonical translation initiation signals

    Get PDF
    AbstractIn Eubacteria, de novo translation of some internal cistrons may be inefficient or impossible unless the 5′ neighboring cistron is also translated (translational coupling). Translation reinitiation is an extreme case of translational coupling in which translation of a message depends entirely on the presence of a nearby terminating ribosome. In this work, the characteristics of mRNA cis-elements inducing the reinitiation process in Escherichia coli have been investigated using a combinatorial approach. A number of novel translational reinitiation sequences (TRSs) were thus identified, which show a wide range of reinitiation activities fully dependent on a translational coupling event and unrelated to the presence/absence of secondary structure or mRNA stability. Moreover, some of the isolated TRSs are similar to intercistronic sequences present in the E. coli genome

    Inhibition of HIV-1 replication in primary human monocytes by the IκB-αS32/36A repressor of NF-κB

    Get PDF
    BACKGROUND: The identification of the molecular mechanisms of human immunodeficiency virus type 1, HIV-1, transcriptional regulation is required to develop novel inhibitors of viral replication. NF-κB transacting factors strongly enhance the HIV/SIV expression in both epithelial and lymphoid cells. Controversial results have been reported on the requirement of NF-κB factors in distinct cell reservoirs, such as CD4-positive T lymphocytes and monocytes. We have previously shown that IκB-αS32/36A, a proteolysis-resistant inhibitor of NF-κB, potently inhibits the growth of HIV-1 and SIVmac239 in cell cultures and in the SIV macaque model of AIDS. To further extend these observations, we have generated NL(AD8)IκB-αS32/36A, a macrophage-tropic HIV-1 recombinant strain endowed to express IκB-αS32/36A. RESULTS: In this work, we show that infection with NL(AD8)IκB-αS32/36A down-regulated the NF-κB DNA binding activity in cells. NL(AD8)IκB-αS32/36A was also highly attenuated for replication in cultures of human primary monocytes. CONCLUSIONS: These results point to a major requirement of NF-κB activation for the optimal replication of HIV-1 in monocytes and suggest that agents which interfere with NF-κB activity could counteract HIV-1 infection of monocytes-macrophages in vivo

    IκB-α Represses the Transcriptional Activity of the HIV-1 Tat Transactivator by Promoting Its Nuclear Export

    No full text
    The long terminal repeat of human immunodeficiency virus, type 1 (HIV-1) contains an NF-kappaB enhancer and is potently inhibited by IkappaB-alphaS32/36A, a proteolysis-resistant inhibitor of NF-kappaB transacting factors. The evidence that NF-kappaB is dispensable for HIV-1 expression raises the question of whether IkappaB-alpha represses the HIV-1 transcription by mechanisms distinct from NF-kappaB inhibition. Here, we report that IkappaB-alpha negatively regulates the HIV-1 expression and replication in an NF-kappaB-independent manner by directly binding to Tat, which results in the nuclear export and cytoplasmic sequestration of the viral transactivator. The sequence of IkappaB-alpha required for Tat inhibition spans from amino acids 72 to 287 and includes the nuclear localization signal, the carboxyl-terminal nuclear export signal, and the binding site for the arginine-rich domain of Tat. This novel mechanism of cross-talk between Tat and IkappaB-alpha provides further insights into the mechanisms of HIV-1 regulation and could assist in the development of novel strategies for AIDS therapy
    corecore