11 research outputs found
Structure-activity relationship study of the pyridine moiety of isothiazolo[4, 3-b]pyridines as antiviral agents targeting cyclin G-associated kinase
Previously, we reported the discovery of 3,6-disubstituted isothiazolo[4,3-b]pyridines as potent and selective cyclin G-associated kinase (GAK) inhibitors with promising antiviral activity. In this manuscript, the structure-activity relationship study was expanded to synthesis of isothiazolo[4,3-b]pyridines with modifications of the pyridine moiety. This effort led to the discovery of an isothiazolo[4,3-b]pyridine derivative with a 3,4-dimethoxyphenyl residue at position 5 that displayed low nanomolar GAK binding affinity and antiviral activity against dengue virus.status: publishe
Cyclin G-associated kinase (GAK) affinity and antiviral activity studies of a series of 3-C-substituted isothiazolo[4,3-b]pyridines.
Cyclin G-associated kinase (GAK) is a cellular regulator of the clathrin-associated host adaptor proteins AP-1 and AP-2, which regulates intracellular trafficking of dengue virus during early and late stages of the viral lifecycle. Previously, the discovery of isothiazolo[4,3-b]pyridines as potent and selective GAK inhibitors with promising antiviral activity was reported. In this manuscript, the synthesis of isothiazolo[4,3-b]pyridines with a carbon-linked substituent at position 3 is described by the application of regioselective Suzuki and Sonogashira coupling reactions. A derivative with a 3,4-dimethoxyphenyl residue at position 3 demonstrates low nanomolar binding affinity for GAK and antiviral activity against dengue virus. These findings reveal that appropriate substitution of a phenyl moiety at position 3 of the scaffold can improve GAK binding affinity.status: publishe
Successful Propagation of Flavivirus Infectious cDNAs by a Novel Method To Reduce the Cryptic Bacterial Promoter Activity of Virus Genomes▿ †
Reverse genetics is a powerful tool to study single-stranded RNA viruses. Despite tremendous efforts having been made to improve the methodology for constructing flavivirus cDNAs, the cause of toxicity of flavivirus cDNAs in bacteria remains unknown. Here we performed mutational analysis studies to identify Escherichia coli promoter (ECP) sequences within nucleotides (nt) 1 to 3000 of the dengue virus type 2 (DENV2) and Japanese encephalitis virus (JEV) genomes. Eight and four active ECPs were demonstrated within nt 1 to 3000 of the DENV2 and JEV genomes, respectively, using fusion constructs containing DENV2 or JEV segments and empty vector reporter gene Renilla luciferase. Full-length DENV2 and JEV cDNAs were obtained by inserting mutations reducing their ECP activity in bacteria without altering amino acid sequences. A severe cytopathic effect occurred when BHK21 cells were transfected with in vitro-transcribed RNAs from either a DENV2 cDNA clone with multiple silent mutations within the prM-E-NS1 region of dengue genome or a JEV cDNA clone with an A-to-C mutation at nt 90 of the JEV genome. The virions derived from the DENV2 or JEV cDNA clone exhibited infectivities similar to those of their parental viruses in C6/36 and BHK21 cells. A cis-acting element essential for virus replication was revealed by introducing silent mutations into the central portion (nt 160 to 243) of the core gene of DENV2 infectious cDNA or a subgenomic DENV2 replicon clone. This novel strategy of constructing DENV2 and JEV infectious clones could be applied to other flaviviruses or pathogenic RNA viruses to facilitate research in virology, viral pathogenesis, and vaccine development
Optimization of Isothiazolo[4,3-b]pyridine-Based Inhibitors of Cyclin G Associated Kinase (GAK) with Broad-Spectrum Antiviral Activity
There is an urgent need for strategies to combat dengue and other emerging viral infections. We reported that cyclin G-associated kinase (GAK), a cellular regulator of the clathrin-associated host adaptor proteins AP-1 and AP-2, regulates intracellular trafficking of multiple unrelated RNA viruses during early and late stages of the viral lifecycle. We also reported the discovery of potent, selective GAK inhibitors based on an isothiazolo[4,3- b]pyridine scaffold, albeit with moderate antiviral activity. Here, we describe our efforts leading to the discovery of novel isothiazolo[4,3- b]pyridines that maintain high GAK affinity and selectivity. These compounds demonstrate improved in vitro activity against dengue virus, including in human primary dendritic cells, and efficacy against the unrelated Ebola and chikungunya viruses. Moreover, inhibition of GAK activity was validated as an important mechanism of antiviral action of these compounds. These findings demonstrate the potential utility of a GAK-targeted broad-spectrum approach for combating currently untreatable emerging viral infections.status: publishe
Resistance Analysis and Characterization of a Thiazole Analogue, BP008, as a Potent Hepatitis C Virus NS5A Inhibitor
Hepatitis C virus (HCV) is a global health problem, affecting approximately 3% of the world's population. The standard treatment for HCV infection is often poorly tolerated and ineffective. Therefore, the development of novel or more effective treatment strategies to treat chronic HCV infection is urgently needed. In this report, BP008, a potent small-molecule inhibitor of HCV replication, was developed from a class of compounds with thiazol core structures by means of utilizing a cell-based HCV replicon system. The compound reduced the reporter expression of the HCV1b replicon with a 50% effective concentration (EC50) and selective index value of 4.1 ± 0.7 nM and >12,195, respectively. Sequencing analyses of several individual clones derived from BP008-resistant RNAs purified from cells harboring HCV1b replicon revealed that amino acid substitutions mainly within the N-terminal region (domain I) of NS5A were associated with decreased inhibitor susceptibility. Q24L, P58S, and Y93H are the key substitutions for resistance selection; F149L and V153M play the compensatory role in the replication and drug resistance processes. Moreover, BP008 displayed synergistic effects with alpha interferon (IFN-α), NS3 protease inhibitor, and NS5B polymerase inhibitor, as well as good oral bioavailability in SD rats and favorable exposure in rat liver. In summary, our results pointed to an effective small-molecule inhibitor, BP008, that potentially targets HCV NS5A. BP008 can be considered a part of a more effective therapeutic strategy for HCV in the future
Synthesis and structure–activity relationships of 3,5-disubstituted-pyrrolo[2,3-b]pyridines as inhibitors of adaptor-associated kinase 1 with antiviral activity
There are currently no approved drugs for the treatment of emerging viral infections, such as dengue and Ebola. Adaptor-associated kinase 1 (AAK1) is a cellular serine–threonine protein kinase that functions as a key regulator of the clathrin-associated host adaptor proteins and regulates the intracellular trafficking of multiple unrelated RNA viruses. Moreover, AAK1 is overexpressed specifically in dengue virus-infected but not bystander cells. Because AAK1 is a promising antiviral drug target, we have embarked on an optimization campaign of a previously identified 7-azaindole analogue, yielding novel pyrrolo[2,3-b]pyridines with high AAK1 affinity. The optimized compounds demonstrate improved activity against dengue virus both in vitro and in human primary dendritic cells and the unrelated Ebola virus. These findings demonstrate that targeting cellular AAK1 may represent a promising broad-spectrum antiviral strategy621258105831FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP106169/ZZ14/ZThis work was supported by award number W81XWH-16-1− 0691 from the Department of Defense (DoD), Congressionally Directed Medical Research Programs (CDMRP) to S.E., P.H.; Grant 12393481 from the Defense Threat Reduction Agency (DTRA), Fundamental Research to Counter Weapons of Mass Destruction to S.E., P.H.; and seed grant from the Stanford SPARK program. S.V. is the recipient of a doctoral fellowship from the Research FoundationFlanders (1S00116N). S.P. was supported by the Child Health Research Institute, Lucile Packard Foundation for Children’s Health and the Stanford CSTA (grant number UL1 TR000093). The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA Darmstadt Germany, MSD, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, Sao Paulo Research Foundation-FAPESP, Takeda, and ̃ Wellcome [106169/ZZ14/Z
Synthesis and Structure-Activity Relationships of 3,5-Disubstituted-pyrrolo[2,3-b]pyridines as Inhibitors of Adaptor-Associated Kinase 1 with Antiviral Activity
There are currently no approved drugs for the treatment of emerging viral infections, such as dengue and Ebola. Adaptor-associated kinase 1 (AAK1) is a cellular serine-threonine protein kinase that functions as a key regulator of the clathrin-associated host adaptor proteins and regulates the intracellular trafficking of multiple unrelated RNA viruses. Moreover, AAK1 is overexpressed specifically in dengue virus-infected but not bystander cells. Because AAK1 is a promising antiviral drug target, we have embarked on an optimization campaign of a previously identified 7-azaindole analogue, yielding novel pyrrolo[2,3- b]pyridines with high AAK1 affinity. The optimized compounds demonstrate improved activity against dengue virus both in vitro and in human primary dendritic cells and the unrelated Ebola virus. These findings demonstrate that targeting cellular AAK1 may represent a promising broad-spectrum antiviral strategy.status: publishe
Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects
Global health is threatened by emerging viral infections, which largely lack effective vaccines or therapies. Targeting host pathways that are exploited by multiple viruses could offer broad-spectrum solutions. We previously reported that AAK1 and GAK, kinase regulators of the host adaptor proteins AP1 and AP2, are essential for hepatitis C virus (HCV) infection, but the underlying mechanism and relevance to other viruses or in vivo infections remained unknown. Here, we have discovered that AP1 and AP2 cotraffic with HCV particles in live cells. Moreover, we found that multiple viruses, including dengue and Ebola, exploit AAK1 and GAK during entry and infectious virus production. In cultured cells, treatment with sunitinib and erlotinib, approved anticancer drugs that inhibit AAK1 or GAK activity, or with more selective compounds inhibited intracellular trafficking of HCV and multiple unrelated RNA viruses with a high barrier to resistance. In murine models of dengue and Ebola infection, sunitinib/erlotinib combination protected against morbidity and mortality. We validated sunitinib- and erlotinib-mediated inhibition of AAK1 and GAK activity as an important mechanism of antiviral action. Additionally, we revealed potential roles for additional kinase targets. These findings advance our understanding of virus-host interactions and establish a proof of principle for a repurposed, host-targeted approach to combat emerging viruses.status: publishe
Optimization of Isothiazolo[4,3‑<i>b</i>]pyridine-Based Inhibitors of Cyclin G Associated Kinase (GAK) with Broad-Spectrum Antiviral Activity
There is an urgent need for strategies
to combat dengue and other
emerging viral infections. We reported that cyclin G-associated kinase
(GAK), a cellular regulator of the clathrin-associated host adaptor
proteins AP-1 and AP-2, regulates intracellular trafficking of multiple
unrelated RNA viruses during early and late stages of the viral lifecycle.
We also reported the discovery of potent, selective GAK inhibitors
based on an isothiazolo[4,3-<i>b</i>]pyridine scaffold,
albeit with moderate antiviral activity. Here, we describe our efforts
leading to the discovery of novel isothiazolo[4,3-<i>b</i>]pyridines that maintain high GAK affinity and selectivity.
These compounds demonstrate improved in vitro activity
against dengue virus, including in human primary dendritic cells,
and efficacy against the unrelated Ebola and chikungunya viruses.
Moreover, inhibition of GAK activity was validated as an important
mechanism of antiviral action of these compounds. These findings demonstrate
the potential utility of a GAK-targeted broad-spectrum approach for
combating currently untreatable emerging viral infections