6 research outputs found

    Mobility in a Globalised World 2015

    Get PDF
    The term mobility has different meanings in the following science disciplines. In economics, mobility is the ability of an individual or a group to improve their economic status in relation to income and wealth within their lifetime or between generations. In information systems and computer science, mobility is used for the concept of mobile computing, in which a computer is transported by a person during normal use. Logistics creates by the design of logistics networks the infrastructure for the mobility of people and goods. Electric mobility is one of today’s solutions from engineering perspective to reduce the need of energy resources and environmental impact. Moreover, for urban planning, mobility is the crunch question about how to optimise the different needs for mobility and how to link different transportation systems. In this publication we collected the ideas of practitioners, researchers, and government officials regarding the different modes of mobility in a globalised world, focusing on both domestic and international issues

    Field of vision of modern cars - a study to improve the evaluation of car geometries based on real world accident scenarios documented in the ADAC Accident Research

    No full text
    Today's volumes of traffic require more and more responsibility from each individual road user in their interactions. Those who drive motor vehicles have the singular obligation to minimise the risk of accidents and hence the severity of injuries, particularly with a view to the most vulnerable road users such as motor bikes, bikes and pedestrians. Since responsible and pro-active driving depends first and foremost on the visual information relayed by our eyes and the visual channel this requires good command of the traffic and all-round visibility from our driver's seat. Granted that human error can never be fully excluded, improving visibility around the car is nevertheless an urgent priority. To do so, we need to rate visibility in the most realistic driving situations. Since the existing visibility metrics and methodology are not applicable to real-life driving situations, this study aimed at developing a new visibility rating methodology based on real-life accident scenarios. On the basis of the cases documented by the accident research project, this study analysed criteria indicative of diminishing visibility on the one hand and revealing some peculiarities in connection with the visibility issue on the other. Based on the above, the project set out to develop a rating methodology allowing to assess all-round visibility in various road situations taking into account both driver and road geometries. In this context, the assessment of visibility while turning a corner, crossing an intersection and joining traffic on a major road (priority through route) is of major importance. The first tests have shown that critical situations can be avoided by adapting the relevant geometries and technical solutions and that significant improvements of road safety can be derived therefrom

    Analysis of Benzo[a]pyrene in Vegetable Oils Using Molecularly Imprinted Solid Phase Extraction (MISPE) Coupled with Enzyme-Linked Immunosorbent Assay (ELISA)

    No full text
    This paper describes the development of a molecularly imprinted polymer-based solid phase extraction (MISPE) method coupled with enzyme-linked immunosorbent assay (ELISA) for determination of the PAH benzo[a]pyrene (B[a]P) in vegetable oils. Different molecularly imprinted polymers (MIPs) were prepared using non-covalent 4-vinylpyridine/divinylbenzene co-polymerization at different ratios and dichloromethane as porogen. Imprinting was done with a template mixture of phenanthrene and pyrene yielding a broad-specific polymer for PAHs with a maximum binding capacity (Q) of ~32 μg B[a]P per 50 mg of polymer. The vegetable oil/n-hexane mixture (1:1, (v/v)) was pre-extracted with acetonitrile, the solvent evaporated, the residue reconstituted in n-hexane and subjected to MISPE. The successive washing with n-hexane and isopropanol revealed most suitable to remove lipid matrix constituents. After elution of bound PAHs from MISPE column with dichloromethane, the solvent was evaporated, the residue reconstituted with dimethyl sulfoxide and diluted 100-fold with methanol/water (10:90, (v/v)) for analysis of B[a]P equivalents with an ELISA. The B[a]P recovery rates in spiked vegetable oil samples of different fatty acid composition were determined between 63% and 114%. The presence of multiple PAHs in the oil sample, because of MIP selectivity and cross-reactivity of the ELISA, could yield overestimated B[a]P values

    Detection of the Carcinogenic Water Pollutant Benzo[a]pyrene with an Electro-Switchable Biosurface

    No full text
    The toxic nature of polycyclic aromatic hydrocarbons (PAHs), in particular benzo­[a]­pyrene (B­[a]­P), neccessitates the monitoring of PAH contamination levels in food and the environment. Here we introduce an indirect immunoassay format using electro-switchable biosurfaces (ESB) for the detection of B­[a]P in water. The association of anti-B­[a]­P antibodies to microelectrodes is analyzed in real-time by measuring changes in the oscillation dynamics of DNA nanolever probes, which are driven to switch their orientations by high-frequency electrical actuation. From the association kinetics, the active concentration of anti-B­[a]­P, and hence the B­[a]P contamination of the sample, can be determined with picomolar sensitivity. The detection limit of the assay improves with measurement time because increasingly accurate analyses of the binding kinetics become possible. It is demonstrated that an exceedance of the permissible 10 ng/L (40 pM) limit for B­[a]­P is detectable in an unprecedented short assay time (<1 h), using a simple three-step workflow involving minimal sample preparation. The reproducibility was satisfying with standard deviations below 5%. Further, the utility of the assay for practical applications is exemplified by analyzing a river water sample
    corecore