101 research outputs found

    Network integration meets network dynamics

    Get PDF
    Molecular interaction networks provide a window on the workings of the cell. However, combining various types of networks into one coherent large-scale dynamic model remains a formidable challenge. A recent paper in BMC Systems Biology describes a promising step in this direction

    Dosage-Dependent Expression Variation Suppressed on the Drosophila Male X Chromosome.

    Get PDF
    DNA copy number variation is associated with many high phenotypic heterogeneity disorders. We systematically examined the impact of Drosophila melanogaster deletions on gene expression profiles to ask whether increased expression variability owing to reduced gene dose might underlie this phenotypic heterogeneity. Indeed, we found that one-dose genes have higher gene expression variability relative to two-dose genes. We then asked whether this increase in variability could be explained by intrinsic noise within cells due to stochastic biochemical events, or whether expression variability is due to extrinsic noise arising from more complex interactions. Our modeling showed that intrinsic gene expression noise averages at the organism level and thus cannot explain increased variation in one-dose gene expression. Interestingly, expression variability was related to the magnitude of expression compensation, suggesting that regulation, induced by gene dose reduction, is noisy. In a remarkable exception to this rule, the single X chromosome of males showed reduced expression variability, even compared with two-dose genes. Analysis of sex-transformed flies indicates that X expression variability is independent of the male differentiation program. Instead, we uncovered a correlation between occupancy of the chromatin-modifying protein encoded by males absent on the first (mof) and expression variability, linking noise suppression to the specialized X chromosome dosage compensation system. MOF occupancy on autosomes in both sexes also lowered transcriptional noise. Our results demonstrate that gene dose reduction can lead to heterogeneous responses, which are often noisy. This has implications for understanding gene network regulatory interactions and phenotypic heterogeneity. Additionally, chromatin modification appears to play a role in dampening transcriptional noise

    SimBoolNet—a Cytoscape plugin for dynamic simulation of signaling networks

    Get PDF
    Summary: SimBoolNet is an open source Cytoscape plugin that simulates the dynamics of signaling transduction using Boolean networks. Given a user-specified level of stimulation to signal receptors, SimBoolNet simulates the response of downstream molecules and visualizes with animation and records the dynamic changes of the network. It can be used to generate hypotheses and facilitate experimental studies about causal relations and crosstalk among cellular signaling pathways

    Graph theoretical approach to study eQTL: a case study of Plasmodium falciparum

    Get PDF
    Motivation: Analysis of expression quantitative trait loci (eQTL) significantly contributes to the determination of gene regulation programs. However, the discovery and analysis of associations of gene expression levels and their underlying sequence polymorphisms continue to pose many challenges. Methods are limited in their ability to illuminate the full structure of the eQTL data. Most rely on an exhaustive, genome scale search that considers all possible locus–gene pairs and tests the linkage between each locus and gene

    Cross-Platform Microarray Data Normalisation for Regulatory Network Inference

    Get PDF
    Background Inferring Gene Regulatory Networks (GRNs) from time course microarray data suffers from the dimensionality problem created by the short length of available time series compared to the large number of genes in the network. To overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are publicly available, but integration is not straightforward, due to platform and experimental differences. Methods We analyse here different normalisation approaches for microarray data integration, in the context of reverse engineering of GRN quantitative models. We introduce two preprocessing approaches based on existing normalisation techniques and provide a comprehensive comparison of normalised datasets. Conclusions Results identify a method based on a combination of Loess normalisation and iterative K-means as best for time series normalisation for this problem

    Sequence Similarity Network Reveals Common Ancestry of Multidomain Proteins

    Get PDF
    We address the problem of homology identification in complex multidomain families with varied domain architectures. The challenge is to distinguish sequence pairs that share common ancestry from pairs that share an inserted domain but are otherwise unrelated. This distinction is essential for accuracy in gene annotation, function prediction, and comparative genomics. There are two major obstacles to multidomain homology identification: lack of a formal definition and lack of curated benchmarks for evaluating the performance of new methods. We offer preliminary solutions to both problems: 1) an extension of the traditional model of homology to include domain insertions; and 2) a manually curated benchmark of well-studied families in mouse and human. We further present Neighborhood Correlation, a novel method that exploits the local structure of the sequence similarity network to identify homologs with great accuracy based on the observation that gene duplication and domain shuffling leave distinct patterns in the sequence similarity network. In a rigorous, empirical comparison using our curated data, Neighborhood Correlation outperforms sequence similarity, alignment length, and domain architecture comparison. Neighborhood Correlation is well suited for automated, genome-scale analyses. It is easy to compute, does not require explicit knowledge of domain architecture, and classifies both single and multidomain homologs with high accuracy. Homolog predictions obtained with our method, as well as our manually curated benchmark and a web-based visualization tool for exploratory analysis of the network neighborhood structure, are available at http://www.neighborhoodcorrelation.org. Our work represents a departure from the prevailing view that the concept of homology cannot be applied to genes that have undergone domain shuffling. In contrast to current approaches that either focus on the homology of individual domains or consider only families with identical domain architectures, we show that homology can be rationally defined for multidomain families with diverse architectures by considering the genomic context of the genes that encode them. Our study demonstrates the utility of mining network structure for evolutionary information, suggesting this is a fertile approach for investigating evolutionary processes in the post-genomic era

    Discovering local patterns of co - evolution: computational aspects and biological examples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems.</p> <p>Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local.</p> <p>Results</p> <p>In this work, we describe a new set of biological problems that are related to finding patterns of <it>local </it>co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above.</p> <p>We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets.</p> <p>In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the <it>fungi </it>evolutionary line. In the case of mammalian evolution, signaling pathways that are related to <it>neurotransmission </it>exhibit a relatively higher level of co-evolution along the <it>primate </it>subtree.</p> <p>Conclusions</p> <p>We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.</p

    Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential: Reexamining the Connection between the Network Topology and Essentiality

    Get PDF
    The centrality-lethality rule, which notes that high-degree nodes in a protein interaction network tend to correspond to proteins that are essential, suggests that the topological prominence of a protein in a protein interaction network may be a good predictor of its biological importance. Even though the correlation between degree and essentiality was confirmed by many independent studies, the reason for this correlation remains illusive. Several hypotheses about putative connections between essentiality of hubs and the topology of protein–protein interaction networks have been proposed, but as we demonstrate, these explanations are not supported by the properties of protein interaction networks. To identify the main topological determinant of essentiality and to provide a biological explanation for the connection between the network topology and essentiality, we performed a rigorous analysis of six variants of the genomewide protein interaction network for Saccharomyces cerevisiae obtained using different techniques. We demonstrated that the majority of hubs are essential due to their involvement in Essential Complex Biological Modules, a group of densely connected proteins with shared biological function that are enriched in essential proteins. Moreover, we rejected two previously proposed explanations for the centrality-lethality rule, one relating the essentiality of hubs to their role in the overall network connectivity and another relying on the recently published essential protein interactions model

    Interrogating domain-domain interactions with parsimony based approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification and characterization of interacting domain pairs is an important step towards understanding protein interactions. In the last few years, several methods to predict domain interactions have been proposed. Understanding the power and the limitations of these methods is key to the development of improved approaches and better understanding of the nature of these interactions.</p> <p>Results</p> <p>Building on the previously published Parsimonious Explanation method (PE) to predict domain-domain interactions, we introduced a new Generalized Parsimonious Explanation (GPE) method, which (i) adjusts the granularity of the domain definition to the granularity of the input data set and (ii) permits domain interactions to have different costs. This allowed for preferential selection of the so-called "co-occurring domains" as possible mediators of interactions between proteins. The performance of both variants of the parsimony method are competitive to the performance of the top algorithms for this problem even though parsimony methods use less information than some of the other methods. We also examined possible enrichment of co-occurring domains and homo-domains among domain interactions mediating the interaction of proteins in the network. The corresponding study was performed by surveying domain interactions predicted by the GPE method as well as by using a combinatorial counting approach independent of any prediction method. Our findings indicate that, while there is a considerable propensity towards these special domain pairs among predicted domain interactions, this overrepresentation is significantly lower than in the iPfam dataset.</p> <p>Conclusion</p> <p>The Generalized Parsimonious Explanation approach provides a new means to predict and study domain-domain interactions. We showed that, under the assumption that all protein interactions in the network are mediated by domain interactions, there exists a significant deviation of the properties of domain interactions mediating interactions in the network from that of iPfam data.</p

    State of the art: refinement of multiple sequence alignments

    Get PDF
    BACKGROUND: Accurate multiple sequence alignments of proteins are very important in computational biology today. Despite the numerous efforts made in this field, all alignment strategies have certain shortcomings resulting in alignments that are not always correct. Refinement of existing alignment can prove to be an intelligent choice considering the increasing importance of high quality alignments in large scale high-throughput analysis. RESULTS: We provide an extensive comparison of the performance of the alignment refinement algorithms. The accuracy and efficiency of the refinement programs are compared using the 3D structure-based alignments in the BAliBASE benchmark database as well as manually curated high quality alignments from Conserved Domain Database (CDD). CONCLUSION: Comparison of performance for refined alignments revealed that despite the absence of dramatic improvements, our refinement method, REFINER, which uses conserved regions as constraints performs better in improving the alignments generated by different alignment algorithms. In most cases REFINER produces a higher-scoring, modestly improved alignment that does not deteriorate the well-conserved regions of the original alignment
    corecore