18 research outputs found

    Kinetics of pyrolisys and gasification using thermogravimetric and thermovolumetric analyses

    Get PDF
    The carbon dioxide gasification process of Miscanthus giganteus biomass was examined using two methods. First an isothermal thermovolumetric method was applied. The measurement was conducted at 950°C and pressure of 0.1 MPa. Based on the continuous analysis of different kinds of gases formed during the gasification process, the thermovolumetric method allowed the determination of yields and composition of the resulting gas as well as the rate constant of CO formation. Then a non-isothermal thermogravimetric method was applied, during which the loss of weight of a sample as a function of temperature was recorded. In the course of the measurement, the temperature was raised from ambient to 950°C and the pressure was 0.1 MPa. As a result, a change in the carbon conversion degree was obtained. Moreover, TGA methods allow distinguishing various stages of the gasification process such as primary pyrolysis, secondary pyrolysis and gasification, and determining kinetic parameters for each stage. The presented methods differs from each other as they are based either on the analysis of changes in the resulting product or on the analysis of changes in the supplied feedstock, but both can be successfully used to the effective examination of kinetics of the gasification process. In addition, an important advantage of both methods is the possibility to carry out the gasification process for different solid fuels as coal, biomass, or solid waste in the atmosphere of a variety of gasification agents

    GABA-A receptor genes do not play a role in genetics of Lesch's typology in Caucasian subjects

    Get PDF
    Lesch's typology differentiates alcoholics into different treatment response subgroups. The effects of ethanol are mediated, to an important extent, via the GABA-ergic system. We have evaluated the linkage disequilibrium patterns and haplotype frequencies of GABRG1 and GABRA2 genes in 133 alcoholics divided according to Lesch's typology and in 145 matched controls. Besides several relationships at a threshold of statistical significance, we found no significant differences in the haplotype distribution of these genes between alcoholics and controls. Lesch's typology may not be related with the genotype of alcoholics – at least in terms of genes with an established role in the development of dependency

    Effect of Pyrolysis Atmosphere on the Gasification of Waste Tire Char

    No full text
    The aim of the study is to assess the influence of the atmosphere during pyrolysis on the course of CO2 gasification of a tire waste char. Two approaches were used: the pyrolysis step was carried out in an inert atmosphere of argon (I) or in an atmosphere of carbon dioxide (II). The examinations were carried out in non-isothermal conditions using a Rubotherm DynTherm thermobalance in the temperature range of 20–1100 °C and three heating rates: 5, 10 and 15 K/min. Based on the results of the gasification examinations, the TG (Thermogravimetry) and DTG (Derivative Thermogravimetry) curves were developed and the kinetic parameters were calculated using the KAS (Kissinger-Akahira-Sunose) and FWO (Flynn-Wall-Ozawa) methods. Additionally, the CO2 gasification of tire chars reaction order (n), was evaluated, and the kinetic parameters were calculated with the use of Coats and Redfern method. Tire waste char obtained in an argon atmosphere was characterized by lower reactivity, which was reflected in shift of conversion and DTG curves to higher temperatures and higher mean values of activation energy. A variability of activation energy values with the progress of the reaction was observed. For char obtained in an argon atmosphere, the activation energy varied in the range of 191.1–277.2 kJ/mol and, for a char obtained in an atmosphere of CO2, in the range of 148.0–284.8 kJ/mol. The highest activation energy values were observed at the beginning of the gasification process and the lowest for the conversion degree 0.5–0.7

    Comparison of CO

    No full text
    The thermogravimetric method allows to carry out measurements both in isothermal conditions for a given temperature and in non-isothermal conditions at a set heating rate. The aim of the work was to compare the process of gasification of the same coal in an atmosphere of CO2 under isothermal and non-isothermal conditions. The measurements were carried out with the use of DynTHERM Thermogravimetric analyzer by Rubotherm. Char derived from Polish bituminous coal “Janina” was used as material for gasification. In case of the isothermal method the measurements were performed at three temperatures – 850 °C, 900 °C and 950 °C, while in case of the non-isothermal method for three heating rates, i.e. 3 K/min, 5 K/min and 10 K/min. Based on the results obtained, kinetics curves of conversion degree of the gasification process were developed and kinetic parameters of the gasification reaction i.e. reaction order, activation energy and pre-exponential factor were determined. The values of the kinetic parameters obtained from measurements performed in isothermal and non-isothermal conditions were compared

    Effect of Pyrolysis Atmosphere on the Gasification of Waste Tire Char

    No full text
    The aim of the study is to assess the influence of the atmosphere during pyrolysis on the course of CO2 gasification of a tire waste char. Two approaches were used: the pyrolysis step was carried out in an inert atmosphere of argon (I) or in an atmosphere of carbon dioxide (II). The examinations were carried out in non-isothermal conditions using a Rubotherm DynTherm thermobalance in the temperature range of 20–1100 °C and three heating rates: 5, 10 and 15 K/min. Based on the results of the gasification examinations, the TG (Thermogravimetry) and DTG (Derivative Thermogravimetry) curves were developed and the kinetic parameters were calculated using the KAS (Kissinger-Akahira-Sunose) and FWO (Flynn-Wall-Ozawa) methods. Additionally, the CO2 gasification of tire chars reaction order (n), was evaluated, and the kinetic parameters were calculated with the use of Coats and Redfern method. Tire waste char obtained in an argon atmosphere was characterized by lower reactivity, which was reflected in shift of conversion and DTG curves to higher temperatures and higher mean values of activation energy. A variability of activation energy values with the progress of the reaction was observed. For char obtained in an argon atmosphere, the activation energy varied in the range of 191.1–277.2 kJ/mol and, for a char obtained in an atmosphere of CO2, in the range of 148.0–284.8 kJ/mol. The highest activation energy values were observed at the beginning of the gasification process and the lowest for the conversion degree 0.5–0.7

    Life Cycle Assessment of Hydrogen Production from Coal Gasification as an Alternative Transport Fuel

    No full text
    The gasification of Polish coal to produce hydrogen could help to make the country independent of oil and gas imports and assist in the rational energy transition from gray to green hydrogen. When taking strategic economic or legislative decisions, one should be guided not only by the level of CO2 emissions from the production process, but also by other environmental impact factors obtained from comprehensive environmental analyses. This paper presents an analysis of the life cycle of hydrogen by coal gasification and its application in a vehicle powered by FCEV cells. All the main stages of hydrogen fuel production by Shell technology, as well as hydrogen compression and transport to the distribution point, are included in the analyses. In total, two fuel production scenarios were considered: with and without sequestration of the carbon dioxide captured in the process. Life cycle analysis was performed according to the procedures and assumptions proposed in the FC-Hy Guide, Guidance Document for performing LCAs on Fuel Cells and H₂ Technologies by the CML baseline method. By applying the CO2 sequestration operation, the GHG emissions rate for the assumed functional unit can be reduced by approximately 44% from 34.8 kg CO2-eq to 19.5 kg CO2-eq, but this involves a concomitant increase in the acidification rate from 3.64·10−2 kg SO2-eq to 3.78·10−2 kg SO2-eq, in the eutrophication index from 5.18·10−2 kg PO3−4-eq to 5.57·10−2 kg PO3−4-eq and in the abiotic depletion index from 405 MJ to 414 MJ and from 1.54·10−5 kg Sbeq to 1.61·10−5 kg Sbeq

    Kinetics examination of pressurised steam gasification of beech wood

    No full text
    In Poland, among all renewable energy sources, share of biomass in electricity production is the largest. Great potential in biomass utilization involves use of gasification technology. The course of biomass gasification process in steam atmosphere is the subject of numerous scientific studies. The aim of this study was kinetics examination of pressurized beech wood waste gasification, that can be successfully used in industrial gasification. Measurements were carried out on a unique laboratory installation, that allows kinetics examination of solid fuels gasification with steam at wide range of pressures, via using thermovolumetric method. Formation rates of main gaseous products were determined, moreover, composition of post-reaction gas, as well as biomass conversion degree depending on the temperature were specified. Kinetic parameters of gasification were calculated and series of kinetic models were used to their designation ie Isoconvesional method, Integrated Core Model (ICM), Grain Model (GM) and Random Pore Model (RPM)

    Thermovolumetric investigations of steam gasification of coals and their chars

    No full text
    The process of steam gasification of three coals of various rank and three chars obtained from these coals by the ex-situ method at 900 °C was compared. In the coal gasification process, the pyrolysis stage plays a very important part, which is connected with its direct impact on the kinetics of gasification of the resulting char. What is more, taking into consideration the impact of pyrolysis conditions on char properties, it should be anticipated that the gasification kinetics of coal and char, formed from it by the ex situ method, will be different. In order to examine and compare the process of gasification of coals and chars, an isothermal thermovolumetric method, designed by the authors, was applied. For all the examined samples the measurements were performed at three temperatures, i.e. 850, 900, and 950 °C, and at the pressure of 0.1 MPa. An evaluation of the impact of raw material on the steam gasification of the examined samples was made. The carbon conversion degree and the kinetic parameters of CO and H2 formation reaction were calculated. It was observed that the course of gasification is different for coals and chars obtained from them and it can be concluded that coals are more reactive than chars. Values of kinetic parameters of carbon monoxide and hydrogen formation calculated for coals and corresponding chars are also different. Due to the observed differences the process of gasification of coals and of chars with steam should not be equated

    Kinetics examination of pressurised steam gasification of beech wood

    No full text
    In Poland, among all renewable energy sources, share of biomass in electricity production is the largest. Great potential in biomass utilization involves use of gasification technology. The course of biomass gasification process in steam atmosphere is the subject of numerous scientific studies. The aim of this study was kinetics examination of pressurized beech wood waste gasification, that can be successfully used in industrial gasification. Measurements were carried out on a unique laboratory installation, that allows kinetics examination of solid fuels gasification with steam at wide range of pressures, via using thermovolumetric method. Formation rates of main gaseous products were determined, moreover, composition of post-reaction gas, as well as biomass conversion degree depending on the temperature were specified. Kinetic parameters of gasification were calculated and series of kinetic models were used to their designation ie Isoconvesional method, Integrated Core Model (ICM), Grain Model (GM) and Random Pore Model (RPM)
    corecore