224 research outputs found

    Pre-hospital management of penetrating pelvic injuries — a case study

    Get PDF
    INTRODUCTION: Penetrating pelvic injuries and the complications caused by them are a global problem in the provision of services by emergency medical teams. They often pose a significant challenge for medical personnel, particularly in patient evacuation and stabilization during transport. CASE REPORT: The emergency medical service (EMS) was dispatched to a traffic accident — the report contained information about one conscious victim with a foreign body within the patient's body. At the accident scene, a delivery truck crashed into the tow bar of a trailer standing on the road, and one person was seriously injured due to the impact. The preliminary assessment confirmed a foreign body penetrating the right thigh, deformation and enlargement of the thigh contour, pain in the thigh, pelvis, and tenderness in the thoracic-lumbar spine with the end part of the tow bar hook palpable under the skin. The victim was suspected of having a femur fracture, pelvic injuries, and damage to internal organs. On neurological examination, sensation and motor functions were preserved in all limbs. The evacuation procedure was established after the Fire Department (FD) rescuers arrived. The injured person was removed from the vehicle on an orthopedic board with the help of eight rescuers. The victim was placed on his left side with the right side elevated, with continuous manual stabilization supported by a blanket, pillows, and orthopedic boar straps. CONCLUSIONS: Each traumatic injury event requires selecting and using the appropriate equipment. A good compromise between speed and precision of actions should not significantly contribute to the worsening of the injury. An increase in a rescuer's substantive knowledge on how to proceed in the case of this type of trauma and injuries, as well as close cooperation with the fire department, will undoubtedly result in more appropriate actions

    Levodopa-Induced Dyskinesia Is Associated with Increased Thyrotropin Releasing Hormone in the Dorsal Striatum of Hemi-Parkinsonian Rats

    Get PDF
    Background Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition. Methodology/Principal Findings Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes. Conclusions/Significance TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.Morris K. Udall Center for Excellence in Parkinson’s Research at MGH/MITNational Institutes of Health (U.S.) (NIH NS38372)American Parkinson Disease Association, Inc.University of Alabama at BirminghamMassachusetts General HospitalNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIDDK/NIH grant R01 DK58148)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NINDS/NIH grant NS045231)Stanley H. and Sheila G. Sydney FundMichael J. Fox Foundation for Parkinson's Researc

    Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor

    Get PDF
    Antidepressants increase adult hippocampal neurogenesis in animal models, but the underlying molecular mechanisms are unknown. In this study, we used human hippocampal progenitor cells to investigate the molecular pathways involved in the antidepressant-induced modulation of neurogenesis. Because our previous studies have shown that antidepressants regulate glucocorticoid receptor (GR) function, we specifically tested whether the GR may be involved in the effects of these drugs on neurogenesis. We found that treatment (for 3–10 days) with the antidepressant, sertraline, increased neuronal differentiation via a GR-dependent mechanism. Specifically, sertraline increased both immature, doublecortin (Dcx)-positive neuroblasts (+16%) and mature, microtubulin-associated protein-2 (MAP2)-positive neurons (+26%). This effect was abolished by the GR-antagonist, RU486. Interestingly, progenitor cell proliferation, as investigated by 5′-bromodeoxyuridine (BrdU) incorporation, was only increased when cells were co-treated with sertraline and the GR-agonist, dexamethasone, (+14%) an effect which was also abolished by RU486. Furthermore, the phosphodiesterase type 4 (PDE4)-inhibitor, rolipram, enhanced the effects of sertraline, whereas the protein kinase A (PKA)-inhibitor, H89, suppressed the effects of sertraline. Indeed, sertraline increased GR transactivation, modified GR phosphorylation and increased expression of the GR-regulated cyclin-dependent kinase-2 (CDK2) inhibitors, p27Kip1 and p57Kip2. In conclusion, our data suggest that the antidepressant, sertraline, increases human hippocampal neurogenesis via a GR-dependent mechanism that requires PKA signaling, GR phosphorylation and activation of a specific set of genes. Our data point toward an important role for the GR in the antidepressant-induced modulation of neurogenesis in humans

    Aggression, anxiety and vocalizations in animals: GABA A and 5-HT anxiolytics

    Full text link
    A continuing challenge for preclinical research on anxiolytic drugs is to capture the affective dimension that characterizes anxiety and aggression, either in their adaptive forms or when they become of clinical concern. Experimental protocols for the preclinical study of anxiolytic drugs typically involve the suppression of conditioned or unconditioned social and exploratory behavior (e.g., punished drinking or social interactions) and demonstrate the reversal of this behavioral suppression by drugs acting on the benzodiazepine-GABA A complex. Less frequently, aversive events engender increases in conditioned or unconditioned behavior that are reversed by anxiolytic drugs (e.g., fear-potentiated startle). More recently, putative anxiolytics which target 5-HT receptor subtypes produced effects in these traditional protocols that often are not systematic and robust. We propose ethological studies of vocal expressions in rodents and primates during social confrontations, separation from social companions, or exposure to aversive environmental events as promising sources of information on the affective features of behavior. This approach focusses on vocal and other display behavior with clear functional validity and homology. Drugs with anxiolytic effects that act on the benzodiazepine-GABA A receptor complex and on 5-HT 1A receptors systematically and potently alter specific vocalizations in rodents and primates in a pharmacologically reversible manner; the specificity of these effects on vocalizations is evident due to the effectiveness of low doses that do not compromise other physiological and behavioral processes. Antagonists at the benzodiazepine receptor reverse the effects of full agonists on vocalizations, particularly when these occur in threatening, startling and distressing contexts. With the development of antagonists at 5-HT receptor subtypes, it can be anticipated that similar receptor-specificity can be established for the effects of 5-HT anxiolytics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46351/1/213_2005_Article_BF02245590.pd

    Behavioral evidence for the significance of serotoninergic (5-HT) receptors in cocaine addiction

    No full text
    Cocaine addiction has somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Presently, there is no medication approved for the treatment of cocaine addiction. In recent years, data from the literature (pre-clinical studies and clinical trials) have provided several lines of evidence that serotonin (5-HT) and 5-HT receptors play a modulatory role in the mechanisms of action of cocaine. Here we review the contribution of 5-HT receptor subtypes to cocaine sensitization, discrimination, conditioned place preference, self-administration, reinstatement of seeking behavior and withdrawal symptoms in laboratory animals. Additionally, the consequences of chronic cocaine exposure on particular 5-HT receptor-assigned functions in pre-clinical studies are presented
    • …
    corecore