89 research outputs found

    Thallium Isotopic Compositions in Hawaiian Lavas: Evidence for Recycled Materials on the Kea Side of the Hawaiian Mantle Plume

    Get PDF
    Hawaiian volcanoes record 6 Ma of potentially deep mantle chemistry and form two parallel volcanic chains that are geochemically unique, named Loa and Kea. Loa volcanoes erupt lavas with isotopically enriched compositions thought to reflect the presence of recycled material in the deep mantle source of the Hawaiian plume. Variations in stable thallium (Tl) isotopes have been used to trace recycled pelagic ocean sediment from subduction to eruption in arc and intraplate lavas. Previous work attributed heavy Tl isotopic compositions in eight Loa samples to recycled sediments in their source. We reexamined this hypothesis using a large sample set (n = 34) of shield-stage, tholeiitic basalt from 13 Hawaiian volcanoes representing the entire range of isotopically enriched and depleted compositions along the Hawaiian chain. Samples were acid-leached prior to isotopic analysis to remove post-eruption alteration and resulting ε205Tl values show statistical differences between Loa and Kea volcanoes. Corresponding isotopic data and re-analyzed trace element concentrations suggest that the ε205Tl values are primary magmatic signatures. Possible co-variations between heavy ε205Tl and oxygen isotopes in samples from Kea-trend volcanoes could reflect the presence of ancient, recycled pelagic sediment on the Kea side of the Hawaiian plume, which samples the average deep Pacific mantle. As such, the deep mantle source of both Loa and Kea Hawaiian volcanoes may contain recycled materials of different natures and recycling histories, which supports work from both geophysical and geochemical studies suggesting that the Earth's lower mantle is chemically heterogeneous on multiple spatial scales

    Magma recharge patterns control eruption styles and magnitudes at Popocatépetl volcano (Mexico)

    Get PDF
    This work was funded by UK Natural Environment Research Council grant NE/M014584/1, Royal Society (London) Newton International Exchanges grant IE140605, and a Natural History Museum (London) Collection Enhancement Fund, all to C.M. Petrone, and a Janet Watson Scholarship (Imperial College London) to M.F. Mangler.Diffusion chronometry has produced petrological evidence that magma recharge in mafic to intermediate systems can trigger volcanic eruptions within weeks to months. However, less is known about longer-term recharge frequencies and durations priming magma reservoirs for eruptions. We use Fe-Mg diffusion modeling in orthopyroxene to show that the duration, frequency, and timing of pre-eruptive recharge at Popocatépetl volcano (Mexico) vary systematically with eruption style and magnitude. Effusive eruptions are preceded by 9–13 yr of increased recharge activity, compared to 15–100 yr for explosive eruptions. Explosive eruptions also record a higher number of individual recharge episodes priming the plumbing system. The largest explosive eruptions are further distinguished by an ∼1 yr recharge hiatus directly prior to eruption. Our results offer valuable context for the interpretation of ongoing activity at Popocatépetl, and seeking similar correlations at other arc volcanoes may advance eruption forecasting by including constraints on potential eruption size and style.Peer reviewe

    Thallium isotopic composition of phlogopite in kimberlite-hosted MARID and PIC mantle xenoliths

    Get PDF
    MARID (Mica-Amphibole-Rutile-Ilmenite-Diopside) and PIC (Phlogopite-Ilmenite-Clinopyroxene) rocks are rare mantle xenoliths entrained by kimberlites. Their high phlogopite modes (15 to ∼100 vol.%) and consequent enrichments in alkali metals and H2O suggest a metasomatic origin. Phlogopite also has high concentrations (>0.2 µg/g) of thallium (Tl) relative to mantle abundances (<3 ng/g). Thallium isotope ratios have proven useful in tracing the input of Tl-rich materials, such as pelagic sediments and altered oceanic crust, to mantle sources because of their distinct isotopic compositions compared to the peridotitic mantle. This study presents the first Tl isotopic compositions of well-characterised phlogopite separates from MARID and PIC samples to further our understanding of their genesis. The PIC rocks in this study were previously interpreted as the products of kimberlite melt metasomatism, whereas the radiogenic and stable N-O isotope systematics of MARID rocks suggest a parental metasomatic agent containing a recycled component. The ε205Tl values of phlogopite in both PIC (–2.7 ± 0.8; 2 s.d., n = 4) and MARID samples (–2.5 ± 1.3; 2 s.d., n = 21) overlap with the estimated mantle composition (–2.0 ± 1.0). PIC phlogopite Tl contents (∼0.4 µg/g) are suggestive of equilibrium with kimberlite melts (0.1–0.6 µg/g Tl), based on partitioning experiments in other silica-undersaturated melts. Kimberlite Tl-ε205Tl systematics suggest their genesis does not require a recycled contribution: however, high temperature-altered oceanic crust cannot be ruled out as a component of the Kimberley kimberlites’ source. Mantle-like ε205Tl values in MARID samples also seem to contradict previous suggestions of a recycled contribution towards their genesis. Recycled components with isotopic compositions close to mantle values (e.g., high temperature-altered oceanic crust) are still permitted. Moreover, mass balance mixing models indicate that incorporation into the primitive mantle of 1–30% of a low temperature-altered oceanic crust + continental crust recycled component or 1–50% of continental crust alone could be accommodated by the Tl–ε205Tl systematics of the MARID parental melt. This scenario is consistent with experimental evidence and existing isotopic data. One PIC phlogopite separate has an extremely light Tl isotopic composition of –9.9, interpreted to result from kinetic isotopic fractionation. Overall, phlogopite is the main host mineral for Tl in metasomatised mantle and shows a very restricted range in Tl isotopic composition, which overlaps with estimates of the mantle composition. These results strongly suggest that negligible high temperature equilibrium Tl isotopic fractionation occurs during metasomatism and reinforces previous estimates of the mantle’s Tl isotopic composition

    Integrated Petrological and Fe-Zn Isotopic Modelling of Plutonic Differentiation

    Get PDF
    The upper continental crust is formed from chemically diverse granitic plutons. Active debate surrounds the range of physical conditions (P-T-X-fO2) and differentiation processes which occur in mush bodies that solidify to form plutons. Transition metal stable isotopes are increasingly employed to trace magmatic processes in both extrusive lavas and intrusive plutonic suites, with a focus on analysis of whole rock powders. However, studies of plutonic suites often overlook the complex textures represented within coarse grained samples, and how these will influence whole rock isotopic compositions. Here we examine the calc-alkaline Boggy Plain Zoned Pluton, SE Australia, which closely approximates closed system behaviour during magmatic differentiation. We combine petrological examination with Fe and Zn isotopic analysis of biotite, hornblende and magnetite mineral separates and whole rock powders. Whole rock Fe isotopic composition (as δ56Fe) increases from 0.038‰ to 0.171‰ with decreasing MgO content, while mineral separates display heavy Fe isotope enrichment in the order magnetite > biotite = hornblende > pyroxene. A lack of correlation between whole rock Fe and Zn isotopic compositions suggests that the Fe isotopic variation is predominantly driven by closed system fractional crystallisation: specifically by the balance between crystallisation of isotopically heavy magnetite, and isotopically light silicates. To demonstrate this quantitatively, temperature dependent mineral-melt fractionation factors were derived from the mineral separate data (Δ56Femag-melt = 0.17x106/T2 and Δ56Febt/hbd-melt = -0.12x106/T2) and used to construct models that successfully reproduce the observed Fe isotopic variation during fractional crystallisation. These fractionation factors are compared to theoretical and empirical estimates from previous studies. We highlight that accurate determinations of temperature and modal mineralogy are critical when modelling Fe isotopic variations in plutonic suites. Successful interpretation of equilibrium Fe isotopic fractionation in a relatively simple calc-alkaline suite like the Boggy Plain Zoned Pluton paves the way for Fe isotopes to be used to investigate more complex mush bodies

    A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge

    Get PDF
    Mantle oxygen fugacity (fO2) governs the physico-chemical evolution of the Earth, however current estimates from commonly used basalt redox proxies are often in disagreement. In this study we compare three different potential basalt fO2 proxies: Fe3+/Fetot, V/Sc and V isotopes, determined on the same submarine lavas from a 700 km section of the Reykjanes Ridge, near Iceland. These samples provide a valuable test of the sensitivities of fO2 proxies to basalt petrogenesis, as they formed at different melting conditions and from a mantle that towards Iceland exhibits increasing long-term enrichment of incompatible elements. New trace element data were determined for 63 basalts with known Fe3+/Fetot. A subset of 19 lavas, covering the geographical spread of the ridge transect, was selected for vanadium isotope analyses. Vanadium is a multi-valence element whose isotopic fractionation is theoretically susceptible to redox conditions. Yet, the VAA composition of basaltic glasses along the Reykjanes Ridge covers only a narrow range (VAA = −1.09 to −0.86‰; 1SD = 0.02–0.09) and does not co-vary with fractionation-corrected Fe3+/Fetot (0.134–0.151; 1SD = 0.005) or V/Sc (6.6–8.5; 1SD = 0.1-1.3) ratios. However, on a global scale, basaltic VAA may be controlled by the extent of melting. The V/Sc compositions of primitive (MgO > 7.5 wt%) basalts show no systematic change along the entire length of the Reykjanes Ridge. Typical peridotite melting models in which source Fe3+/Fetot is constant at 5% and that account for the increased mantle potential temperature nearer the plume center and the fO2 dependent partitioning of V, can reproduce the V/Sc data. However, while these melting models predict that basalt Fe3+/Fetot ratios should decrease with increasing mantle potential temperature towards Iceland, fractionation-corrected Fe3+/Fetot of Reykjanes Ridge lavas remain nearly constant over the ridge length. This discrepancy is explained by source heterogeneity, where an oxidized mantle pyroxenite component contributes to melting with increasing proximity to Iceland. Comparison of observed and modeled Fe3+/Fetot indicate that source variation in fO2 is present under the Reykjanes Ridge, with higher Fe3+/Fetot closer to Iceland. This source variability in fO2 cannot be resolved by V isotopes and redox-sensitive trace element ratios, which instead appear to record magmatic processes

    Reconciling mantle wedge thermal structure with arc lava thermobarometric determinations in oceanic subduction zones

    Get PDF
    Subduction zone mantle wedge temperatures impact plate interaction, melt generation, and chemical recycling. However, it has been challenging to reconcile geophysical and geochemical constraints on wedge thermal structure. Here we chemically determine the equilibration pressures and temperatures of primitive arc lavas from worldwide intraoceanic subduction zones and compare them to kinematically driven thermal wedge models. We find that equilibration pressures are typically located in the lithosphere, starting just below the Moho, and spanning a wide depth range of ∼25 km. Equilibration temperatures are high for these depths, averaging ∼1300°C. We test for correlations with subduction parameters and find that equilibration pressures correlate with upper plate age, indicating overriding lithosphere thickness plays a role in magma equilibration. We suggest that most, if not all, thermobarometric pressure and temperature conditions reflect magmatic reequilibration at a mechanical boundary, rather than reflecting the conditions of major melt generation. The magma reequilibration conditions are difficult to reconcile, to a first order, with any of the conditions predicted by our dynamic models, with the exception of subduction zones with very young, thin upper plates. For most zones, a mechanism for substantially thinning the overriding plate is required. Most likely thinning is localized below the arc, as kinematic thinning above the wedge corner would lead to a hot fore arc, incompatible with fore-arc surface heat flow and seismic properties. Localized subarc thermal erosion is consistent with seismic imaging and exhumed arc structures. Furthermore, such thermal erosion can serve as a weakness zone and affect subsequent plate evolutio

    Nucleosynthetic vanadium isotope heterogeneity of the early solar system recorded in chondritic meteorites

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 505 (2019): 131-140, doi:10.1016/j.epsl.2018.10.029.Vanadium (V) isotopes have been hypothesized to record irradiation processes in the early solar system through production of the minor 50V isotope. However, because V only possesses two stable isotopes it is difficult to distinguish irradiation from other processes such as stable isotope fractionation and nucleosynthetic heterogeneity that could also cause V isotope variation. Here we perform the first detailed investigation of V isotopes in ordinary and carbonaceous chondrites to investigate the origin of any variation. We also perform a three-laboratory inter-calibration for chondrites, which confirms that the different chemical separation protocols do not induce V isotope analytical artifacts as long as samples are measured using medium resolution multiple collector inductively coupled plasma mass spectrometry (MCICPMS). Vanadium isotope compositions (51V/50V) of carbonaceous chondrites correlate with previously reported nucleosynthetically derived excesses in 54Cr. Both 51V and 54Cr are the most neutron-rich of their respective elements, which may suggest that pre-solar grains rich in r-process isotopes is the primary cause of the V-Cr isotope correlation. Vanadium isotope ratios of ordinary chondrite groups and Earth form a weaker correlation with 54Cr that has a different slope than observed for carbonaceous chondrites. The offset between carbonaceous and non-carbonaceous meteorites in V-Cr isotope space is similar to differences also reported for chromium, titanium, oxygen, molybdenum and ruthenium isotopes, which has been inferred to reflect the presence in the early solar system of two physically separated reservoirs. The V isotope composition of Earth is heavier than any meteorite measured to date. Therefore, V isotopes support models of Earth accretion in which a significant portion of Earth was formed from material that is not present in our meteorite collections.This study was funded by NASA Emerging Worlds grant NNX16AD36G to SGN

    Thallium isotopes as tracers of recycled materials in subduction zones : review and new data for lavas from Tonga-Kermadec and Central America

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Journal of Volcanology and Geothermal Research 339 (2017): 23-40, doi:10.1016/j.jvolgeores.2017.04.024.Sediment is actively being subducted in every convergent margin worldwide. Yet, geochemical data for arc lavas from several subduction zones, such as Northern Tonga and Costa Rica have revealed either attenuated or limited evidence for sediment in their mantle source regions. Here we use thallium (Tl) isotopes to trace slab components in lavas from the Tonga-Kermadec and Central American arcs. In general, both arcs display Tl isotope data that are most compatible with addition of sediment to the sub-arc mantle from the subducting slab. This evidence is particular strong in the Tonga-Kermadec arc where pelagic clays dominate the Tl budget along the entire arc. Contributions from altered oceanic crust as well as the Louisville Seamount chain that subducts underneath Northern Tonga are not visible in Tl isotopes, which is likely due to the very high Tl concentrations found in pelagic sediments outboard of the Tonga-Kermadec arc. Lavas from Central America reveal variable and systematic Tl isotope compositions along-strike. In particular, lavas from Nicaragua are dominated by contributions from sediments, whereas Costa Rican samples reveal a significant altered oceanic crust component with little influence from sediments on thallium isotope composition. The absence of a sediment signature in Costa Rica corresponds with the Cocos Ridge and the seamount province subduction, which results in a thinner sediment cover. Furthermore, the subducted sediment is dominated by carbonates with very low Tl concentrations and, therefore, small amounts of carbonate sediment added to the mantle wedge do not contribute significantly to the overall Tl budget. A review of Tl isotope and concentration data from the Aleutians, Marianas, Tonga-Kermadec and Central American arcs demonstrate that pelagic sediments are detectable in most arcs, whereas altered oceanic crust components only become appreciable when sediment Tl concentrations are very low (e.g. carbonate) or if sediments are no longer a significant component of the subducting slab (e.g. slab melting in Western Aleutians). As such, Tl isotopes are a promising tool to trace sediment subduction although this requires at least some pelagic sediment is present in the subducted sediment package. We suggest that thallium partitioning between the slab and mantle wedge is most likely controlled by retention in phengite or by partitioning into fluids. Residual phengite likely produces high Cs/Tl ratios because Tl should be more compatible in phengite than is Cs, however, this conclusion needs experimental verification. The stability of phengite is lower at higher fluid contents, which results in hyperbolic relationships between Cs/Tl and possible indicators of fluids such as Sr/Nd and Ba/Th. Thus, combined Tl isotopic and elemental systematics not only provide detailed information about the specific slab components that contribute to arc lavas, but also potentially shed light on the mineralogy and physical conditions of subducting slabs.We gratefully acknowledge funding from NSF grants EAR-1119373 and EAR-1427310 to SGN

    Equilibrium partitioning and isotopic fractionation of nitrogen between biotite, plagioclase, and K-feldspar during magmatic differentiation

    Get PDF
    Funding: UK Natural Environment Research Council (NE/R012253/1, NE/V010824/1, NE/P012167/1)A significant portion of the continental crust is composed of plutonic igneous rocks. However, little is known about the geochemical behaviour of N between the different minerals during magmatic differentiation. To provide new constraints for the behaviour of N during crust formation, we have characterised the geochemistry of nitrogen (N) in the compositionally zoned calc-alkaline pluton at Loch Doon, SW Scotland. We present N concentration and N isotope values for whole-rock data alongside biotite, plagioclase and K-feldspar mineral separates and assess the degree to which these data preserve equilibrium partitioning during magmatic differentiation. We show that whole rock likely inherited its N contents and δ15N signatures from the initial source composition and that this signature is homogenous at a pluton scale. Whilst the whole-rock data are best explained as crust-derived N in the source, the degree of homogenisation across a pluton scale is inconsistent with empirical N diffusivities, ruling out syn-emplacement crustal assimilation as the source of N. Instead, our data suggest a crustal signature inherited from depth associated with the Iapetus subduction zone. At a mineral scale, we find that N preferentially partitions into the feldspars over mica in this system in the order K-feldspar > plagioclase ≈ biotite > quartz, with average mineral-mineral distribution coefficients of DNplagioclase-biotite = 1.3 ± 0.6 and DNKspar-biotite = 2.8 ± 0.6. Partitioning is accompanied by a large and near constant equilibrium isotope fractionation factor between biotite and both feldspars (averages are Δ15NPlag-Biotite = +7.8 ± 1.2 ‰ and Δ15NKspar-Biotite = +7.9 ± 1.0 ‰), whereas Δ15NKspar-Plagioclase closely approximates 0 ‰, where both minerals show δ15N overlapping with the bulk rock δ15N values. These results show that mica crystallisation generates in a large negative Δ15N resulting a 15N-depleted reservoir within plutonic rocks. Moreover, our dataset suggests that feldspars might be a more significant host of N in the igneous portion of Earth’s continental and oceanic crust than previous thought.Publisher PDFPeer reviewe

    A new method for the determination of low-level actinium-227 in geological samples

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Radioanalytical and Nuclear Chemistry 296 (2013): 279-283, doi:10.1007/s10967-012-2140-0.We developed a new method for the determination of 227Ac in geological samples. The method uses extraction chromatographic techniques and alpha-spectrometry and is applicable for a range of natural matrices. Here we report on the procedure and results of the analysis of water (fresh and seawater) and rock samples. Water samples were acidified and rock samples underwent total dissolution via acid leaching. A DGA (N,N,N’,N’-tetra-n-octyldiglycolamide) extraction chromatographic column was used for the separation of actinium. The actinium fraction was prepared for alpha spectrometric measurement via cerium fluoride micro-precipitation. Recoveries of actinium in water samples were 80±8 % (number of analyses n=14) and in rock samples 70±12 % (n=30). The minimum detectable activities (MDA) were 0.017-0.5 Bq kg-1 for both matrices. Rock sample 227Ac activities ranged from 0.17 to 8.3 Bq kg-1 and water sample activities ranged from below MDA values to 14 Bq kg-1of 227Ac. From the analysis of several standard rock and water samples with the method we found very good agreement between our results and certified values
    • …
    corecore