124 research outputs found

    Fibroblasts in head neck squamous cell carcinoma associated with perineural invasion have high level nuclear Yes-Associated Protein (YAP) expression

    Get PDF
    Paul A. Reynolds, PhD, is supported by the Melville Trust for the Care and cure of Cancer.We retrospectively studied the expression of Yes-associated protein (YAP) using immunohistochemical staining in 10 cases of head and neck squamous cell carcinoma with associated perineural invasion. We find that fibroblasts in areas associated with perineural invasion show higher levels of nuclear YAP compared to fibroblasts in the stroma of normal mucosa, with a median cell count of 35.4 per high-power field in the former and 3.9 in the latter. No differences were observed between the expression of YAP phosphorylated at Ser127 in the tumoral stroma compared to that in the normal mucosa, with a median cell count expression of 4.9 in the former versus 5.0 in the latter. Therefore, a strong and increased nuclear YAP expression in fibroblasts associated with perineural invasion in head and neck squamous cell carcinoma suggests that YAP-mediated transcription programs in these fibroblasts may contribute to perineural invasion.PostprintPublisher PDFPeer reviewe

    Molecular restoration of archived transcriptional profiles by complementary-template reverse-transcription (CT-RT)

    Get PDF
    Gene expression profiling of formalin-fixed and paraffin-embedded (FFPE) specimens, banked from completed clinical trials and routine clinical care, has the potential to yield valuable information implicating and linking genes with clinical parameters. In order to prepare high-quality cDNA from highly fragmented FFPE-RNA, previously precluded from high-throughput analyses, we have designed a novel strategy based on the nucleic acid restoration of incomplete cDNA sequences prior to T7 in vitro transcription (IVT) amplification. We describe this strategy as complementary-template reverse-transcription (CT-RT) because short single-stranded T7-oligo-dT24-VN-DNA sequences, obtained from FFPE-RNA, are used as primers for the RT of complementary RNA templates contained in a sense-RNA library. We validated our assay by determining the correlation between expression profiles of a matched 10-year-old frozen and FFPE breast cancer sample. We show that T7 IVT-amplification of cDNA transcripts restored by CT-RT is a specific and reliable process that allows recovery of transcriptional features undetectable by direct T7 IVT-amplification of FFPE-RNA. Furthermore, CT-RT restored 35–41% of the transcripts from archived breast and cervical specimens when compared to matched frozen tissue; and profiles included tissue-specific transcripts. Our results indicate that CT-RT allows microarray profiling of severely degraded RNA that could not be analyzed by previous methods

    Foreword

    Get PDF
    Funding: European Research Council under the European Union’s Horizon 2020 Framework Programme (ERC StG ABLASE, 640012); BBSRC (BB/P027148/1); EPSRC Programme Grant (EP/P030017/1); EPSRC Doctoral Training Partnership (EP/N509759/1, EP/L505079/1).Mechanobiology plays a prominent role in cancer invasion and metastasis. The ability of a cancer to degrade extracellular matrix (ECM) is likely connected to its invasiveness. Many cancer cells form invadopodia—micrometer-sized cellular protrusions that promote invasion through matrix degradation (proteolysis). Although it has been hypothesized that invadopodia exert mechanical force that is implicated in cancer invasion, direct measurements remain elusive. Here, we use a recently developed interferometric force imaging technique that provides piconewton resolution to quantify invadopodial forces in cells of head and neck squamous carcinoma and to monitor their temporal dynamics. We compare the force exerted by individual protrusions to their ability to degrade ECM and investigate the mechanical effects of inhibiting invadopodia through overexpression of microRNA-375. By connecting the biophysical and biochemical characteristics of invadopodia, our study provides a new perspective on cancer invasion that, in the future, may help to identify biomechanical targets for cancer therapy.Publisher PDFPeer reviewe

    Nonpromoter methylation of the CDKN2A gene with active transcription is associated with improved locoregional control in laryngeal squamous cell carcinoma

    Get PDF
    We previously reported a novel association between CDKN2A nonpromoter methylation and transcription (ARF/INK4a) in human papillomavirus associated oropharyngeal tumors. In this study we assessed whether nonpromoter CDKN2A methylation in laryngeal squamous cell carcinomas (LXSCC) conferred a similar association with transcription that predicted patient outcome. We compared DNA methylation and ARF/INK4a RNA expression levels for the CDKN2A locus using the Illumina HumanMethylation27 beadchip and RT-PCR in 43 LXSCC tumor samples collected from a prospective study of head and neck cancer patients treated at Montefiore Medical Center (MMC). Validation was performed using RNAseq data on 111 LXSCC tumor samples from the Cancer Genome Atlas (TCGA). The clinical relevance of combined nonpromoter CDKN2A methylation and transcription was assessed by multivariate Cox regression for locoregional recurrence on a subset of 69 LXSCC patients with complete clinicopathologic data from the MMC and TCGA cohorts. We found evidence of CDKN2A nonpromoter hypermethylation in a third of LXSCC from our MMC cohort, which was significantly associated with increased ARF and INK4a RNA expression (Wilcoxon rank-sum, P = 0.007 and 0.003, respectively). A similar association was confirmed in TCGA samples (Wilcoxon rank-sum test P < 0.0001 for ARF and INK4a). Patients with CDKN2A hypermethylation or high ARF/INK4a expression were significantly less likely to develop a locoregional recurrence compared to those with neither of the features, independent of other clinicopatholgic risk factors (adjusted hazard ratio=0.21, 95% confidence interval:0.05-0.81). These results support the conclusion that CDKN2A nonpromoter methylation is associated with increased ARF and INK4a RNA expression, and improved locoregional control in LXSCC

    Redox signaling by glutathione peroxidase 2 links vascular modulation to metabolic plasticity of breast cancer

    Get PDF
    In search of redox mechanisms in breast cancer, we uncovered a striking role for glutathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss stimulates malignant progression due to reactive oxygen species/hypoxia inducible factor-α (HIF1α)/VEGFA (vascular endothelial growth factor A) signaling, causing poor perfusion and hypoxia, which were reversed by GPx2 reexpression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated the Warburg effect in most tumor cell subpopulations, except for one cluster, which was capable of oxidative phosphorylation and glycolysis, as confirmed by coexpression of phosphorylated-AMPK and GLUT1. These findings underscore a unique role for redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, leading to metabolic plasticity and malignant progression
    • …
    corecore