39 research outputs found

    Application of the quantum spin glass theory to image restoration

    Get PDF
    Quantum fluctuation is introduced into the Markov random fields (MRF's) model for image restoration in the context of Bayesian approach. We investigate the dependence of the quantum fluctuation on the quality of BW image restoration by making use of statistical mechanics. We find that the maximum posterior marginal (MPM) estimate based on the quantum fluctuation gives a fine restoration in comparison with the maximum a posterior (MAP) estimate or the thermal fluctuation based MPM estimate.Comment: 19 pages, 9 figures, 1 table, RevTe

    Ruthenium-rhenium and ruthenium-palladium supramolecular photocatalysts for photoelectrocatalytic CO2 and H+ reduction.

    Get PDF
    Photoelectrocatalysis offers the opportunity to close the carbon loop and convert captured CO2 back into useful fuels and feedstocks, mitigating against anthropogenic climate change. However, since CO2 is inherently stable and sunlight is a diffuse and intermittent energy source, there are considerable scientific challenges to overcome. In this paper we present the integration of two new metalā€“organic photocatalysts into photocathodes for the reduction of CO2 using ambient light. The two molecular dyads contained a rhenium carbonyl or palladium-based catalytic centre bridged to a ruthenium bipyridyl photosensitizer functionalised with carboxylic acid groups to enable adsorption onto the surface of mesoporous NiO cathodes. The photocathodes were evaluated for photoelectrochemical reduction of CO2 to CO or H+ to H2 and the performances were compared directly with a control compound lacking the catalytic site. A suite of electrochemical, UV-visible steady-state/time-resolved spectroscopy, X-ray photoelectron spectroscopy and gas chromatography measurements were employed to gain kinetic and mechanistic insight to primary electron transfer processes and relate the structure to the photoelectrocatalytic performance under various conditions in aqueous media. A change in behaviour when the photocatalysts were immobilized on NiO was observed. Importantly, the transfer of electron density towards the Reā€“CO catalytic centre was observed, using time resolved infrared spectroscopy, only when the photocatalyst was immobilized on NiO and not in MeCN solution. We observed that photocurrent and gaseous photoproduct yields are limited by a relatively low yield of the required charge-separated state across the NiO|Photocatalyst interface. Nonetheless, the high faradaic efficiency (94%) and selectivity (99%) of the Re system towards CO evolution are very promising

    International genetic evaluations for feed intake in dairy cattle

    No full text
    Feed represents a large proportion of the variable costs in dairy production systems. The omission of feed intake measures explicitly from national dairy cow breeding objectives is predominantly due to a lack of information on which to make selection decisions. Individual cow feed intake data are available in different countries, mostly from research or nucleus herds. None of these datasets are sufficiently large enough on their own to generate accurate genetic evaluations. Here we collate data from ten populations in nine countries. A total of 224,174 test-day records from parity one to five animals, as well as 1,784 records from growing heifers were available. Random regression models fitted to lactating cow test-day records were used to predict feed intake at 70 days post calving. Heritability estimates of predicted cow feed intake 70-days post-calving was 0.34 across the entire dataset and varied, within population, from 0.08 to 0.52. Repeatability of feed intake across lactations was 0.66. Heritability of feed intake in growing heifers was 0.20 to 0.34. The genetic correlation between feed intake in lactating cows and heifers was 0.67. A combined pedigree and genomic relationship matrix was used to improve linkages between populations for the estimation of genetic correlations between countries categorized as North America, Grazing, Other low input, and High input EU. Genetic correlation estimates between populations varied from 0.14 to 0.84 but was stronger (0.76 to 0.84) between the populations representative of high input production systems

    International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources

    Get PDF
    Feed represents a large proportion of the variable costs in dairy production systems. The omission of feed intake measures explicitly from national dairy cow breeding objectives is predominantly due to a lack of information from which to make selection decisions. However, individual cow feed intake data are available in different countries, mostly from research or nucleus herds. None of these data sets are sufficiently large enough on their own to generate accurate genetic evaluations. In the current study, we collate data from 10 populations in 9 countries and estimate genetic parameters for dry matter intake (DMI). A total of 224,174 test-day records from 10,068 parity 1 to 5 records of 6,957 cows were available, as well as records from 1,784 growing heifers. Random regression models were fit to the lactating cow test-day records and predicted feed intake at 70 d postcalving was extracted from these fitted profiles. The random regression model included a fixed polynomial regression for each lactation separately, as well as herd-year-season of calving and experimental treatment as fixed effects; random effects fit in the model included individual animal deviation from the fixed regression for each parity as well as mean herd-specific deviations from the fixed regression. Predicted DMI at 70 d postcalving was used as the phenotype for the subsequent genetic analyses undertaken using an animal repeatability model. Heritability estimates of predicted cow feed intake 70 d postcalving was 0.34 across the entire data set and varied, within population, from 0.08 to 0.52. Repeatability of feed intake across lactations was 0.66. Heritability of feed intake in the growing heifers was 0.20 to 0.34 in the 2 populations with heifer data. The genetic correlation between feed intake in lactating cows and growing heifers was 0.67. A combined pedigree and genomic relationship matrix was used to improve linkages between populations for the estimation of genetic correlations of DMI in lactating cows; genotype information was available on 5,429 of the animals. Populations were categorized as North America, grazing, other low input, and high input European Union. Albeit associated with large standard errors, genetic correlation estimates for DMI between populations varied from 0.14 to 0.84 but were stronger (0.76 to 0.84) between the populations representative of high-input production systems. Genetic correlations with the grazing populations were weak to moderate, varying from 0.14 to 0.57. Genetic evaluations for DMI can be undertaken using data collated from international populations; however, genotype-by-environment interactions with grazing production systems need to be considered

    Genomic predictions for dry matter intake using the international reference population of gDMI

    No full text
    In this study, we have demonstrated that using dry matter intake (DMI) phenotypes from multiplecountries increases the accuracy of genomic breeding values for this important trait, provided a multi-trait approach is used. Data from Australia, Canada, Denmark, Germany, Ireland, the Netherlands,New Zealand, United Kingdom and two institutions in the United States were combined to estimatethe accuracy of genomic prediction for DMI multi-trait models. The average accuracies was 0.44, andranged from 0.37 (Denmark) to 0.54 (the Netherlands). Enlarging the combined dataset with uniquephenotypes does increase the accuracy of the genomic prediction for DMI. This stimulates furtherinternational collaboration
    corecore