35 research outputs found

    Electrotonic Signals along Intracellular Membranes May Interconnect Dendritic Spines and Nucleus

    Get PDF
    Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron

    A Practitioner’s Guide to Performing a Holistic Evaluation of Technology-Enhanced Learning in Medical Education

    No full text
    Technology-enhanced learning (TEL) is now a common mode of educational delivery within medical education. Despite this upsurge, there remains a paucity in comprehensive evaluation of TEL efficacy. In order to make meaningful and evidence-informed decisions on ‘how’ and ‘when’ to utilise technology within a course, ‘useful knowledge’ is required to support faculty in these decision-making processes. In this monograph, a series of pragmatic and achievable approaches for conducting a holistic evaluation of a TEL resource intervention are detailed. These suggestions are based on an established TEL evaluation framework, as well as the author’s own experience and that of the broader literature. The approaches cover development of an appropriate research question that is based on the availability of existing TEL resources alongside the peer-reviewed literature; the development of an appropriate team as well as recommendations for navigating ethical approval; conducting small-scale quantitative and qualitative measure; and performing a large-scale mixed methods assessment to understand the holistic impact of the TEL resource

    Using personas and the ADKAR framework to evaluate a network designed to facilitate sustained change toward active learning in the undergraduate classroom

    No full text
    Abstract One promising practice for increasing active learning in undergraduate science education is the use of a mentoring network. The Promoting Active Learning and Mentoring (PALM) Network was launched with practitioners from several professional societies and disciplines to make changes in their teaching based on evidence-based practices and to encourage the members to reflect deeply on their teaching experiences. Members of the Network interviewed seven previous Fellows, 1 to 6 years after completing their fellowship, to better understand the value of the Network and how these interactions impacted their ability to sustain change toward more active teaching practices. The interviews resulted in the creation of three personas that reflect the kinds of educators who engaged with the Network: Neil the Novice, Issa the Isolated, and Etta the Expert. Key themes emerged from the interviews about how interactions with the PALM Network sustained change toward evidence-based teaching practices allowing the members to readily adapt to the online learning environment during the COVID-19 pandemic. Understanding how the personas intersect with the ADKAR model contributes to a better understanding of how mentoring networks facilitate transformative change toward active learning and can inform additional professional development programs
    corecore