69 research outputs found

    Influence of CYP2C19 Metabolizer Status on Escitalopram/Citalopram Tolerability and Response in Youth With Anxiety and Depressive Disorders

    Get PDF
    In pediatric patients, the selective serotonin reuptake inhibitors (SSRIs) escitalopram and citalopram (es/citalopram) are commonly prescribed for anxiety and depressive disorders. However, pharmacogenetic studies examining CYP2C19 metabolizer status and es/citalopram treatment outcomes have largely focused on adults. We report a retrospective study of electronic medical record data from 263 youth < 19 years of age with anxiety and/or depressive disorders prescribed escitalopram or citalopram who underwent routine clinical CYP2C19 genotyping. Slower CYP2C19 metabolizers experienced more untoward effects than faster metabolizers (p = 0.015), including activation symptoms (p = 0.029) and had more rapid weight gain (p = 0.018). A larger proportion of slower metabolizers discontinued treatment with es/citalopram than normal metabolizers (p = 0.007). Meanwhile, faster metabolizers responded more quickly to es/citalopram (p = 0.005) and trended toward less time spent in subsequent hospitalizations (p = 0.06). These results highlight a disparity in treatment outcomes with es/citalopram treatment in youth with anxiety and/or depressive disorders when standardized dosing strategies were used without consideration of CYP2C19 metabolizer status. Larger, prospective trials are warranted to assess whether tailored dosing of es/citalopram based on CYP2C19 metabolizer status improves treatment outcomes in this patient population

    Synchronizing Allelic Effects of Opposing Quantitative Trait Loci Confirmed a Major Epistatic Interaction Affecting Acute Lung Injury Survival in Mice

    Get PDF
    Increased oxygen (O2) levels help manage severely injured patients, but too much for too long can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and even death. In fact, continuous hyperoxia has become a prototype in rodents to mimic salient clinical and pathological characteristics of ALI/ARDS. To identify genes affecting hyperoxia-induced ALI (HALI), we previously established a mouse model of differential susceptibility. Genetic analysis of backcross and F2 populations derived from sensitive (C57BL/6J; B) and resistant (129X1/SvJ; X1) inbred strains identified five quantitative trait loci (QTLs; Shali1-5) linked to HALI survival time. Interestingly, analysis of these recombinant populations supported opposite within-strain effects on survival for the two major-effect QTLs. Whereas Shali1 alleles imparted the expected survival time effects (i.e., X1 alleles increased HALI resistance and B alleles increased sensitivity), the allelic effects of Shali2 were reversed (i.e., X1 alleles increased HALI sensitivity and B alleles increased resistance). For in vivo validation of these inverse allelic effects, we constructed reciprocal congenic lines to synchronize the sensitivity or resistance alleles of Shali1 and Shali2 within the same strain. Specifically, B-derived Shali1 or Shali2 QTL regions were transferred to X1 mice and X1-derived QTL segments were transferred to B mice. Our previous QTL results predicted that substituting Shali1 B alleles onto the resistant X1 background would add sensitivity. Surprisingly, not only were these mice more sensitive than the resistant X1 strain, they were more sensitive than the sensitive B strain. In stark contrast, substituting the Shali2 interval from the sensitive B strain onto the X1 background markedly increased the survival time. Reciprocal congenic lines confirmed the opposing allelic effects of Shali1 and Shali2 on HALI survival time and provide unique models to identify their respective quantitative trait genes and to critically assess the apparent bidirectional epistatic interactions between these major-effect loci

    Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing

    Get PDF
    PURPOSE: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. METHODS: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. RESULTS: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. CONCLUSION: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs

    Advances in genetics: widening our understanding of prostate cancer

    Get PDF
    Prostate cancer is a leading cause of cancer-related death in Western men. Our understanding of the genetic alterations associated with disease predisposition, development, progression, and therapy response is rapidly improving, at least in part, owing to the development of next-generation sequencing technologies. Large advances have been made in our understanding of the genetics of prostate cancer through the application of whole-exome sequencing, and this review summarises recent advances in this field and discusses how exome sequencing could be used clinically to promote personalised medicine for prostate cancer patients.</ns4:p

    Two Genes on A/J Chromosome 18 Are Associated with Susceptibility to Staphylococcus aureus Infection by Combined Microarray and QTL Analyses

    Get PDF
    Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that loci on chromosomes 8, 11, and 18 influence susceptibility to S. aureus sepsis in A/J mice. We then used two candidate gene selection strategies to identify genes on these three chromosomes associated with S. aureus susceptibility, and targeted genes identified by both gene selection strategies. First, we used whole genome transcription profiling to identify 191 (56 on chr. 8, 100 on chr. 11, and 35 on chr. 18) genes on our three chromosomes of interest that are differentially expressed between S. aureus-infected A/J and C57BL/6J. Second, we identified two significant quantitative trait loci (QTL) for survival post-infection on chr. 18 using N2 backcross mice (F1 [C18A]×C57BL/6J). Ten genes on chr. 18 (March3, Cep120, Chmp1b, Dcp2, Dtwd2, Isoc1, Lman1, Spire1, Tnfaip8, and Seh1l) mapped to the two significant QTL regions and were also identified by the expression array selection strategy. Using real-time PCR, 6 of these 10 genes (Chmp1b, Dtwd2, Isoc1, Lman1, Tnfaip8, and Seh1l) showed significantly different expression levels between S. aureus-infected A/J and C57BL/6J. For two (Tnfaip8 and Seh1l) of these 6 genes, siRNA-mediated knockdown of gene expression in S. aureus–challenged RAW264.7 macrophages induced significant changes in the cytokine response (IL-1 ÎČ and GM-CSF) compared to negative controls. These cytokine response changes were consistent with those seen in S. aureus-challenged peritoneal macrophages from CSS 18 mice (which contain A/J chromosome 18 but are otherwise C57BL/6J), but not C57BL/6J mice. These findings suggest that two genes, Tnfaip8 and Seh1l, may contribute to susceptibility to S. aureus in A/J mice, and represent promising candidates for human genetic susceptibility studies

    Persistent left superior vena cava: Review of the literature, clinical implications, and relevance of alterations in thoracic central venous anatomy as pertaining to the general principles of central venous access device placement and venography in cancer patients

    Get PDF
    Persistent left superior vena cava (PLSVC) represents the most common congenital venous anomaly of the thoracic systemic venous return, occurring in 0.3% to 0.5% of individuals in the general population, and in up to 12% of individuals with other documented congential heart abnormalities. In this regard, there is very little in the literature that specifically addresses the potential importance of the incidental finding of PLSVC to surgeons, interventional radiologists, and other physicians actively involved in central venous access device placement in cancer patients. In the current review, we have attempted to comprehensively evaluate the available literature regarding PLSVC. Additionally, we have discussed the clinical implications and relevance of such congenital aberrancies, as well as of treatment-induced or disease-induced alterations in the anatomy of the thoracic central venous system, as they pertain to the general principles of successful placement of central venous access devices in cancer patients. Specifically regarding PLSVC, it is critical to recognize its presence during attempted central venous access device placement and to fully characterize the pattern of cardiac venous return (i.e., to the right atrium or to the left atrium) in any patient suspected of PLSVC prior to initiation of use of their central venous access device

    Understanding the Return of Genomic Sequencing Results Process: Content Review of Participant Summary Letters in the eMERGE Research Network

    Get PDF
    A challenge in returning genomic test results to research participants is how best to communicate complex and clinically nuanced findings to participants in a manner that is scalable to the large numbers of participants enrolled. The purpose of this study was to examine the features of genetic results letters produced at each Electronic Medical Records and Genomics (eMERGE3) Network site to assess their readability and content. Letters were collected from each site, and a qualitative analysis of letter content and a quantitative analysis of readability statistics were performed. Because letters were produced independently at each eMERGE site, significant heterogeneity in readability and content was found. The content of letters varied widely from a baseline of notifying participants that results existed to more detailed information about positive or negative results, as well as materials for sharing with family members. Most letters were significantly above the Centers for Disease Control-suggested reading level for health communication. While continued effort should be applied to make letters easier to understand, the ongoing challenge of explaining complex genomic information, the implications of negative test results, and the uncertainty that comes with some types of test and result makes simplifying letter text challenging

    Schematic summary of B.X1-4 consomic and reciprocal X1.B-4 and B.X1-4 congenics and subcongenics for <i>Shali2</i>.

    No full text
    <p>Data represent chromosome 4 of each strain, with X1 (solid white bar) and B (solid black bar) representing the recipient background strain of X1.B-4 and B.X1-4 lines, respectively. Chromosome 4 on the far left depicts MIT markers and their genomic positions (Mbp), along with the <i>Shali2</i> interval (black box). The current <i>Shali2</i> interval is also indicated by dashed lines. Crossovers not matching dashed lines indicate SNPs from the Mouse Universal Genotyping Analysis (MUGA; GeneSeek) panel. For X1.B-4 lines (left half), regions in black denote substituted genome, with congenic lines X1.B-4A, X1.B-4B and X1.B-4C. X1.B-4BA and X1.B-4BB are subcongenic lines derived from the X1.B-4B line. For B.X1-4 lines (right half), regions in white represent substituted genome. B.X1-4 represents a consomic line (full chromosome substitution). B.X1-4A and B.X1-4C are congenic lines and B.X1-4BA is a subcongenic line of B.X1-4B (died). Grey regions represent areas not yet tested for parental origin. Tables below each set of congenic lines summarize mean survival time (MST) and sample size (n) for males and females of each line. *significantly different than same-sex background strain (<i>p</i><0.00132; MWW U-test with Bonferroni correction for 38 group comparisons). +, represents a historical control and includes combined data for new and previously reported controls <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038177#pone.0038177-Prows1" target="_blank">[24]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038177#pone.0038177-Prows2" target="_blank">[25]</a>.</p

    Box-plots comparing survival times for controls and the major <i>Shali1</i> and <i>Shali2</i> congenic lines.

    No full text
    <p>Boxes represent the 25<sup>th</sup> to 75<sup>th</sup> percentiles, and horizontal lines within the box represent median survival times; short dashed lines within boxes denote mean survival times. Whiskers (error bars) above and below the boxes indicate the 90<sup>th</sup> and 10<sup>th</sup> percentiles, respectively. The dashed line across the graph denotes the threshold survival time (153 hrs) for designation of the resistant phenotype <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038177#pone.0038177-Prows1" target="_blank">[24]</a>. Both sexes of all lines (B, X1.B-1A, and X1.B-4BB) differed significantly from the X1 progenitor strain. *, within-strain mean survival times of males (M) and females (F) differed significantly (<i>p</i><0.00132).</p
    • 

    corecore