64 research outputs found

    Coronal disturbances and their effects on the dynamics of the heliosphere

    Get PDF
    The Sun blows out the solar wind which propagates into the interplanetary medium and forms the heliosphere about 100 AU across. The solar activity causes various types of time-dependent phenomena in the solar wind from long-lived corotating interaction regions to shorter on duration but more extreme events like coronal mass ejections. As these structures propagate outward from the Sun, they evolve and interact with each other and the ambient solar wind. Voyager 1 and 2 provided first unique in-situ measurements of these structures in the outer heliosphere. In particular, Voyager observations in the heliosheath, the outermost region of the heliosphere, showed highly variable plasma flows indicating effects of solar variations extending from the Sun to the heliosphere boundaries. Most surprisingly, Voyager 1 data shows shocks and pressure waves beyond the heliosphere in the interstellar medium. Important questions for the future Interstellar Probe mission are (1) how do the heliosphere boundaries respond to solar variations? (2) how do disturbances evolve in the heliosheath? and (3) how far does the Sun influence extend into the interstellar medium? This talk will review observations and recent modeling efforts demonstrating highly variable and dynamic nature of the global heliosphere in response to disturbances originated in the Sun's atmosphere.https://ui.adsabs.harvard.edu/abs/2019EPSC...13.1229P/abstractPublished versio

    Three-dimensional multi-fluid model of a coronal streamer belt with a tilted magnetic dipole

    Get PDF
    Abstract. Observations of streamers in extreme ultraviolet (EUV) emission with SOHO/UVCS show dramatic differences in line profiles and latitudinal variations in heavy ion emission compared to hydrogen Ly-α emission. In order to use ion emission observations of streamers as the diagnostics of the slow solar wind properties, an adequate model of a streamer including heavy ions is required. We extended a previous 2.5-D multi-species magnetohydrodynamics (MHD) model of a coronal streamer to 3-D spherical geometry, and in the first approach we consider a tilted dipole configuration of the solar magnetic field. The aim of the present study is to test the 3-D results by comparing to previous 2.5-D model result for a 3-D case with moderate departure from azimuthal symmetry. The model includes O5+ ions with preferential empirical heating and allows for calculation of their density, velocity and temperature in coronal streamers. We present the first results of our 3-D multi-fluid model showing the parameters of protons, electrons and heavy ions (O5+) at the steady-state solar corona with a tilted steamer belt. We find that the 3-D results are in qualitative agreement with our previous 2.5-D model, and show longitudinal variation in the variables in accordance with the tilted streamer belt structure. Properties of heavy coronal ions obtained from the 3-D model together with EUV spectroscopic observations of streamers will help understanding the 3-D structures of streamers reducing line-of-sight integration ambiguities and identifying the sources of the slow solar wind in the lower corona. This leads to improved understanding of the physics of the slow solar wind

    Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    Full text link
    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutral atoms generates X-ray emission. We assume typical abundance of heavy ions for the Local Bubble plasma and estimate the X-ray emissivity due to charge exchange from the interface between cold neutral cloud and hot plasma. Our results show that charge exchange X-ray emission from the neutral-plasma interfaces can be a non-negligible fraction of the observed X-ray emission.Comment: 9 pages, 7 figure

    MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH INCLUDING SOLAR CYCLE VARIATIONS OF MAGNETIC FIELD INTENSITY

    Get PDF
    In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow's radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic field derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ~100 km s[superscript −1] larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.United States. National Aeronautics and Space Administration (Earth and Space Science Fellowship Program Grant NNX14AO14H
    • …
    corecore