297 research outputs found

    Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight

    Get PDF
    The tail rotor of a helicopter with a single main rotor configuration can experience a significant reduction in thrust when the aircraft operates in crosswind flight. Brown’s vorticity transport model has been used to simulate a main rotor and tail rotor system translating at a sideslip angle that causes the tail rotor to interact with the main rotor tip vortices as they propagate downstream at the lateral extremities of the wake. The tail rotor is shown to exhibit a distinct directionally dependent mode during which tail rotors that are configured so that the blades travel forward at the top of the disk develop less thrust than tail rotors with the reverse sense of rotation. The range of flight speeds over which this mode exists is shown to vary considerably with the vertical location of the tail rotor. At low flight speeds, the directionally dependent mode occurs because the tail rotor is immersed within not only the downwash from the main rotor but also the rotational flow associated with clusters of largely disorganized vorticity within the main rotor wake. At higher flight speeds, however, the tail rotor is immersed within a coherent supervortex that strongly influences the velocity field surrounding the tail rotor

    Meta-analysis of the effects of laidlomycin propionate, fed alone or in combination with chlortetracycline, compared with monensin sodium, fed alone or in combination with tylosin, on growth performance, health, and carcass outcomes in finishing steers in North America

    Get PDF
    Citation: Cernicchiaro, N., Corbin, M., Quinn, M., Prouty, F., Branine, M., & Renter, D. G. (2016). Meta-analysis of the effects of laidlomycin propionate, fed alone or in combination with chlortetracycline, compared with monensin sodium, fed alone or in combination with tylosin, on growth performance, health, and carcass outcomes in finishing steers in North America. Journal of Animal Science, 94(4), 1662-1676. doi:10.2527/jas2015-0086The objective of this research was to use data from multiple studies to comprehensively quantify the effects of feeding 1) laidlomycin propionate (LP), alone and/or in combination with chlortetracycline, compared with 2) monensin sodium (MS), alone and/or in combination with tylosin, at commercially approved dosages, on ADG, DMI, feed efficiency (FE), mortality, and carcass characteristics (HCW and liver abscesses). A secondary objective was to explore potential sources of heterogeneity among the comparative effectiveness studies. A systematic review of peer-reviewed literature and industry reports was used to identify studies that included direct comparisons of these treatments in finishing steers in North America. Random-effects meta-analysis models of performance, carcass, and health-related outcomes were fitted with extracted data, consisting of a total of 17 data sets comprising a total of 135 pens and 13,603 steers. Results showed that pens of steers fed LP had increased ADG (live and carcass adjusted), DMI, and HCW compared with those fed monensin (P 0.05) were identified for FE or for health-related outcomes (overall and cause-specific mortality). There was a substantial amount of heterogeneity in outcomes among studies, and when pen size and type of production setting were included in mixed-effects metaregression models, they accounted for only a small proportion of the between-study heterogeneity found in the meta-analysis models. Therefore, caution should be exercised when interpreting summary estimates in the presence of substantial heterogeneity. However, these results provide comprehensive information on the comparative effects of different ionophores across multiple studies and multiple years, states, and production settings. These unique results can enable quantitative and informed decisions by potential end users of these feed additives that are widely used in the U.S. beef industry for reducing the costs of beef production through enhanced cattle performance

    Environmental assessment of metal exposure to corals living in Castle Harbour, Bermuda

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Chemistry 154 (2013): 55–66, doi:10.1016/j.marchem.2013.05.002.Environmental contamination in Castle Harbour, Bermuda, has been linked to the dissolution and leaching of contaminants from the adjacent marine landfill. This study expands the evidence for environmental impact of leachate from the landfill by quantitatively demonstrating elevated metal uptake over the last 30 years in corals growing in Castle Harbour. Coral Pb/Ca, Zn/Ca and Mn/Ca ratios and total Hg concentrations are elevated relative to an adjacent control site in John Smith's Bay. The temporal variability in the Castle Harbour coral records suggests that while the landfill has increased in size over the last 35 years, the dominant input of metals is through periodic leaching of contaminants from the municipal landfill and surrounding sediment. Elevated contaminants in the surrounding sediment suggest that resuspension is an important transport medium for transferring heavy metals to corals. Increased winds, particularly during the 1990s, were accompanied by higher coral metal composition at Castle Harbour. Coupled with wind-induced resuspension, interannual changes in sea level within the Harbour can lead to increased bioavailability of sediment-bound metals and subsequent coral metal assimilation. At John Smith's Bay, large scale convective mixing may be driving interannual metal variability in the coral record rather than impacts from land-based activities. Results from this study provide important insights into the coupling of natural variability and anthropogenic input of contaminants to the nearshore environment.This work was supported by a grant from a postdoctoral scholarship to N.G. Prouty from the Woods Hole Oceanographic Institution and grants from the NSF (OCE-0402728; K. Hughen) and the Cove Point Foundation (C. Lamborg)

    Seasonal variability in the source and composition of particulate matter in the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight

    Get PDF
    Submarine canyons are often hotspots of biomass due to enhanced productivity and funneling of organic matterof marine and terrestrial origin. However, most deep-sea canyons remain poorly studied in terms of their role asconduits of terrestrial and marine particles. A multi-tracer geochemical investigation of particles collectedyearlong by a sediment trap in Baltimore Canyon on the US Mid-Atlantic Bight (MAB) revealed temporalvariability in source, transport, and fate of particulate matter. Both organic biomarker composition (sterol and nalkanes)and bulk characteristics (δ13C, Δ14C, Chl-a) suggest that while on average the annual contribution ofterrestrial and marine organic matter sources are similar, 42% and 52% respectively, marine sources dominate.Elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight a seasonal influx ofrelatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive micronutrientscadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking ofphytodetrital biomass in response to enhanced surface production within the nutricline. While tidally drivencurrents within the canyon resuspend sediment between 200 and 600 m, resulting in the formation of a nepheloidlayer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone wasminimal. Instead, vertical transport and lateral transport across the continental margin were the dominantprocesses driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organicmatter is likely linked to benthic faunal composition and ecosystem scale carbon cycling

    Ocean circulation and biogeochemistry moderate interannual and decadal surface water pH changes in the Sargasso Sea

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 4931–4939, doi:10.1002/2015GL064431.The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for >90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.Funding to N.F.G. was provided by the University of Hong Kong and the National Research Foundation Singapore under its Singapore NRF Fellowship scheme (National Research Fellow Award NRF-RF2012-03), as administered by the Earth Observatory of Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative. S.C.D. and K.A.H. acknowledge support from the National Science Foundation and Woods Hole Oceanographic Institution

    NF-κB perturbation reveals unique immunomodulatory functions in Prx1 + Fibroblasts that Promote Development of Atopic Dermatitis

    Get PDF
    Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor кB (NF-кB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-кB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-кB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions. © 2022 The Authors, some rights reserve

    Adaptation and Preadaptation of Salmonella enterica to Bile

    Get PDF
    Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations

    POMK regulates dystroglycan function via LARGE-mediated elongation of matriglycan

    Get PDF
    Matriglycan [-GlcA-β1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetylglucosaminyltransferase-1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNac-β1,3-GlcNac-β1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy

    Crystal Structure of PrgI-SipD: Insight into a Secretion Competent State of the Type Three Secretion System Needle Tip and its Interaction with Host Ligands

    Get PDF
    Many infectious Gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major conformational changes in both SipD and PrgI. This rearrangement is mediated via a π bulge in the central SipD helix and is stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip, the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings present the atomic details of the T3SS arrangement occurring at the pathogen-host interface
    corecore