110 research outputs found

    Missense variants in ANO4 cause sporadic encephalopathic or familial epilepsy with evidence for a dominant-negative effect

    Get PDF
    Anoctamins are a family of Ca2+^{2+}-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+^{2+} binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patchclamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+^{2+}-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+^{2+}-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease

    Neuroradiological findings expand the phenotype of OPA1-related mitochondrial dysfunction

    Get PDF
    OBJECTIVE: OPA1 mutations are responsible for more than half of autosomal dominant optic atrophy (ADOA), a blinding disease affecting the retinal ganglion neurons. In most patients the clinical presentation is restricted to the optic nerve degeneration, albeit in 20% of them, additional neuro-sensorial symptoms might be associated to the loss of vision, as frequently encountered in mitochondrial diseases. This study describes clinical and neuroradiological features of OPA1 patients. METHODS: Twenty two patients from 17 families with decreased visual acuity related to optic atrophy and carrying an OPA1 mutation were enrolled. Patients underwent neuro-ophthalmological examinations. Brain magnetic resonance imaging (T1, T2 and flair sequences) was performed on a 1.5-Tesla MR Unit. Twenty patients underwent 2-D proton spectroscopic imaging. RESULTS: Brain imaging disclosed abnormalities in 12 patients. Cerebellar atrophy mainly involving the vermis was observed in almost a quarter of the patients; other abnormalities included unspecific white matter hypersignal, hemispheric cortical atrophy, and lactate peak. Neurological examination disclosed one patient with a transient right hand motor deficit and ENT examination revealed hearing impairment in 6 patients. Patients with abnormal MRI were characterized by: (i) an older age (ii) more severe visual impairment with chronic visual acuity deterioration, and (iii) more frequent associated deafness. CONCLUSIONS: Our results demonstrate that brain imaging abnormalities are common in OPA1 patients, even in those with normal neurological examination. Lactate peak, cerebellar and cortical atrophies are consistent with the mitochondrial dysfunction related to OPA1 mutations and might result from widespread neuronal degeneration

    The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.

    Get PDF
    RATIONALE: The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES: This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS: The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS: The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION: This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). The authors thank Charlotte Oomen for valuable comments on the manuscript.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00213-015-4007-
    • …
    corecore