9 research outputs found
Project Elements: A computational entity-component-system in a scene-graph pythonic framework, for a neural, geometric computer graphics curriculum
We present the Elements project, a computational science and computer
graphics (CG) framework, that offers for the first time the advantages of an
Entity-Component-System (ECS) along with the rapid prototyping convenience of a
Scenegraph-based pythonic framework. This novelty allows advances in the
teaching of CG: from heterogeneous directed acyclic graphs and depth-first
traversals, to animation, skinning, geometric algebra and shader-based
components rendered via unique systems all the way to their representation as
graph neural networks for 3D scientific visualization. Taking advantage of the
unique ECS in a a Scenegraph underlying system, this project aims to bridge CG
curricula and modern game engines, that are based on the same approach but
often present these notions in a black-box approach. It is designed to actively
utilize software design patterns, under an extensible open-source approach.
Although Elements provides a modern, simple to program pythonic approach with
Jupyter notebooks and unit-tests, its CG pipeline is not black-box, exposing
for teaching for the first time unique challenging scientific, visual and
neural computing concepts.Comment: 8 pages, 8 figures, 2 listings, submitted to EuroGraphics 2023
education trac
Progressive tearing and cutting of soft-bodies in high-performance virtual reality
We present an algorithm that allows a user within a virtual environment to
perform real-time unconstrained cuts or consecutive tears, i.e., progressive,
continuous fractures on a deformable rigged and soft-body mesh model in
high-performance 10ms. In order to recreate realistic results for different
physically-principled materials such as sponges, hard or soft tissues, we
incorporate a novel soft-body deformation, via a particle system layered on-top
of a linear-blend skinning model. Our framework allows the simulation of
realistic, surgical-grade cuts and continuous tears, especially valuable in the
context of medical VR training. In order to achieve high performance in VR, our
algorithms are based on Euclidean geometric predicates on the rigged mesh,
without requiring any specific model pre-processing. The contribution of this
work lies on the fact that current frameworks supporting similar kinds of model
tearing, either do not operate in high-performance real-time or only apply to
predefined tears. The framework presented allows the user to freely cut or tear
a 3D mesh model in a consecutive way, under 10ms, while preserving its
soft-body behaviour and/or allowing further animation.Comment: 9 pages, 11 figures, 3 tables, submitted to "International Conference
on Artificial Reality and Telexistence, Eurographics Symposium on Virtual
Environments 2022
MAGES 4.0: Accelerating the world's transition to medical VR training
In this work, we propose MAGES 4.0, a novel Software Development Kit (SDK) to
accelerate the creation of collaborative medical training scenarios in VR/AR.
Our solution offers a versatile authoring platform for developers to create
medical simulations in a future-proof, low-code environment. MAGES breaks the
boundaries between realities since students can collaborate using virtual and
augmented reality devices at the same medical scene. With MAGES we provide a
solution to the 150-year-old training model which is unable to meet the level
of healthcare professionals needed. Our platform incorporates, among others,
the following novel advancements: a) 5G edge-cloud remote rendering and physics
dissection, b) realistic real-time simulation of organic tissues as
soft-bodies, c) a highly realistic cutting and tearing algorithm, d) neural
network assessment for user profiling and, e) a VR recorder to record and
replay or resume the training simulation from any perspective
A network application approach towards 5G and beyond critical communications use cases
Low latency and high bandwidth heralded with 5G networks will allow transmission of large amounts of Mission-Critical data over a short time period. 5G hence unlocks several capabilities for novel Public Protection and Disaster Relief (PPDR) applications, developed to support first responders in making faster and more accurate decisions during times of crisis. As various research initiatives are giving shape to the Network Application ecosystem as an interaction layer between vertical applications and the network control plane, in this article we explore how this concept can unlock finer network service management capabilities that can be leveraged by PPDR solution developers. In particular, we elaborate on the role of Network Applications as means for developers to assure prioritization of specific emergency flows of data, such as high-definition video transmission from PPDR field users to remote operators. To demonstrate this potential in future PPDR-over-5G services, we delve into the transfer of network-intensive PPDR solutions to the Network Application model. We then explore novelties in Network Application experimentation platforms, aiming to streamline development and deployment of such integrated systems across existing 5G infrastructures, by providing the reliability and multi-cluster environments they require
A network application approach towards 5G and beyond critical communications use cases.
Low latency and high bandwidth heralded with 5G networks will allow transmission of large amounts of Mission-Critical data over a short time period. 5G hence unlocks several capabilities for novel Public Protection and Disaster Relief (PPDR) applications, developed to support first responders in making faster and more accurate decisions during times of crisis. As various research initiatives are giving shape to the Network Application ecosystem as an interaction layer between vertical applications and the network control plane, in this article we explore how this concept can unlock finer network service management capabilities that can be leveraged by PPDR solution developers. In particular, we elaborate on the role of Network Applications as means for developers to assure prioritization of specific emergency flows of data, such as high-definition video transmission from PPDR field users to remote operators. To demonstrate this potential in future PPDR-over-5G services, we delve into the transfer of network-intensive PPDR solutions to the Network Application model. We then explore novelties in Network Application experimentation platforms, aiming to streamline development and deployment of such integrated systems across existing 5G infrastructures, by providing the reliability and multi-cluster environments they requireThe author(s) declare financial support was received for the research, authorship, and/or publication of this article. This project has received funding from the EU’s Horizon 2020 innovation action program under Grant agreement No 101016521 (5G-EPICENTRE)
Towards Supporting XR Services: Architecture and Enablers
Emerging XR applications, including Holography,
Augmented, Virtual and Mixed Reality, are characterized by
unprecedented requirements for Quality of experience (QoE),
largely exceeding those currently attainable. To cope with these
requirements, noticeable efforts and a number of initiatives are
ongoing to enhance the current communications technologies,
especially in the direction of supporting ultra-low latency and
increased bandwidth. This work proposes an architecture that
puts together the key enablers to support future XR applications, highlighting the shortcomings of existing technologies and
leveraging the ongoing innovations. It demonstrates the feasibility
of the proposed architecture by describing the processes driving
the platform with relevant use case scenarios, and mapping the
envisioned functionality to existing tools
Toward supporting XR services:architecture and enablers
Abstract
Emerging cross-reality (XR) applications, including holography, augmented, virtual, and mixed reality, are characterized by unprecedented requirements for Quality of Experience (QoE), largely exceeding those currently attainable. To cope with these requirements, noticeable efforts and a number of initiatives are ongoing to enhance the current communications technologies, especially in the direction of supporting ultralow latency and increased bandwidth. This work proposes an architecture that puts together the key enablers to support future XR applications, highlighting the shortcomings of existing technologies and leveraging the ongoing innovations. It demonstrates the feasibility of the proposed architecture by describing the processes driving the platform with relevant use case scenarios, and mapping the envisioned functionality to existing tools
Cloud-based XR Services: A Survey on Relevant Challenges and Enabling Technologies
In recent years, the emergence of XR (eXtended Reality) applications, including Holography, Augmented, Virtual and Mixed
Reality, has resulted in the creation of rather demanding requirements for Quality of Experience (QoE) and Quality of Service (QoS).
In order to cope with requirements such as ultra-low latency and increased bandwidth, it is of paramount importance to leverage
certain technological paradigms. The purpose of this paper is to identify these QoE and QoS requirements and then to provide an
extensive survey on technologies that are able to facilitate the rather demanding requirements of Cloud-based XR Services. To that
end, a wide range of enabling technologies are explored. These technologies include e.g. the ETSI (European Telecommunications
Standards Institute) Multi-Access Edge Computing (MEC), Edge Storage, the ETSI Management and Orchestration (MANO), the
ETSI Zero touch network & Service Management (ZSM), Deterministic Networking, the 3GPP (3rd Generation Partnership Project)
Media Streaming, MPEG’s (Moving Picture Experts Group) Mixed and Augmented Reality standard, the Omnidirectional MediA
Format (OMAF), ETSI’s Augmented Reality Framework etc
Cloud for Holography and Augmented Reality
The paper introduces the CHARITY framework, a novel framework which aspires to leverage the benefits of intelligent, network continuum autonomous orchestration of cloud, edge, and network resources, to create a symbiotic relationship between low and high latency infrastructures. These infrastructures will facilitate the needs of emerging applications such as holographic events, virtual reality training, and mixed reality entertainment. The framework relies on different enablers and technologies related to cloud and edge for offering a suitable environment in order to deliver the promise of ubiquitous computing to the NextGen application clients. The paper discusses the main pillars that support the CHARITY vision, and provide a description of the planned use cases that are planned to demonstrate CHARITY capabilities