10 research outputs found

    Climate change and future ozone concentrations in high resolution over Europe

    Get PDF
    In this study a methodology is developed that applies the ozone concentration change signal from a global climate-chemical modeling system with a coarse horizontal resolution to a finer resolution. To this aim simulations with two different configurations of the GEOS-CHEM chemical transport model are conducted a) driven from the GISS III general circulation model (4ox 5o) for a present (1999–2001) and a future (2049–2051) period and b) driven by assimilated meteorological data (GEOS, 0.5o x 0.667o) for the year 2005. Results indicate highest increases between the future and the reference period in the north west and the south west Europe for both the average mean (~ 5 ppb) and average daily maximum ozone concentrations (~ 10 ppb) whereas the highest decreases (~ 4-6 ppb) are shown in the south East Europe for the same statistical targets. Moreover, these results are of the same sign to the results of the global climate-chemical modelling system in the North-west and the South-east Europe. Nevertheless changes in the GISS/GEOS-CHEM between the future and the present climate are in the range of ± 2 ppb and ± 3 ppb for the average mean and the average daily maximum ozone concentrations respectively

    European CO budget and links with synoptic circulation based on GEOS-CHEM model simulations

    No full text
    The European carbon monoxide (CO) budget is studied in relation to the synoptic circulation throughout 2001, using the nested-grid configuration of the GEOS-CHEM global model and CO measurements from 31 rural background stations. To meet the aims of this study, a seasonal circulation type (CT) classification is developed for the Northern Hemisphere based on mean sea-level pressure (SLP) fields, as well as two upper atmospheric levels, over a 60-yr period. The highest contribution to the European surface CO concentrations is attributed to regional anthropogenic sources (up to ~80%), which become more important under the prevalence of anticyclonic circulation conditions. The corresponding contribution of the long-range transport (LRT) from North America (up to 18%) and Asia (up to 20%) is found highest (lowest) in winter and spring (summer and autumn). The transport of the CO towards Europe in winter is more intense under cyclonic circulation, while both cyclonic and anticyclonic patterns favour LRT during other seasons. Occasionally (mainly in winter and spring), LRT contribution is higher than the regional one (up to 45%). In the free troposphere, the LRT contribution increases, with the largest impact originating from Asia. This flow is favoured by the intense easterly circulation in summer, contributing up to 30% in the Eastern Mediterranean during this season. On the other hand, the regional contribution in the upper levels decreases to 22%. The contribution of CO chemical production is significant for the European CO budget at all levels and seasons, exceeding 50% in the free troposphere during summer. ©2013 A. P. Protonotariou et al

    Study of CO surface pollution in Europe based on observations and nested-grid applications of GEOS-CHEM global chemical transport model

    No full text
    Carbon monoxide (CO) is studied over Europe for 2001 using measurements from 31 rural-background stations and the nested-grid application of the global CTM GEOS-CHEM. The model reveals lowest (highest) biases in warm (cold) periods, tracking observations in most cases more closely than the global model. The role of CO production and destruction processes and the atmospheric conditions are investigated. A rotated Principal Component Analysis is applied to all stations, based on daily CO modelled concentrations in 2001, yielding three principal components (PCs) with stations of common characteristics. CO concentrations are studied for these groups in relation to the circulation patterns prevailing over Europe in 2001, at mean sea level and 850 hPa. The nested-grid model improves results in comparison to those calculated by the global model by up to ~22% for first principal component subregion, where emissions are high and elevation is low. Improvement reaches ~17 and ~7%, respectively, for second and third principal component subregions, where emissions are lower and altitudes are higher. Better performance is achieved for patterns associated with westerly flow, whereas poor skills are revealed during stagnant conditions. During pollution events, the nesting model's ability in capturing CO surface concentrations improves by up to ~40% in comparison to the global simulation. © 2010 The Authors Journal compilation © 2010 Blackwell Munksgaard

    Coupling GEOS-CHEM with a regional air pollution model for Greece

    No full text
    The sensitivity of regional air quality modeling simulations to boundary conditions over Greece is investigated, for various synoptic conditions. For this purpose, a global to mesoscale model-chain is developed and applied, coupling the individual models' simulations. The global chemical transport model GEOS-CHEM, applied in a one-way nested procedure, is used to drive the regional UAM-V chemical dispersion model with time-varying lateral and top boundary conditions. The results of the coupling procedure are compared with the MINOS campaign measurements at Finokalia (Southern Greece) during the period from 1 to 16 August 2001 which is mainly characterized by an interchange of two synoptic types, High-Low and Long Wave trough. The comparison between the simulation results and the measurements reveals that the coupling procedure captures satisfactorily the range of observed CO concentrations at the southern part of Greece. The most severe deviations are observed under strongly variable atmospheric circulation, when no distinct synoptic circulation is allowed to be established in the area. Regarding O3, the highest, though underestimated, surface concentrations are simulated under Long Wave trough conditions due to the influence of the ozone inflow predicted by GEOS-CHEM at the western boundary of the innermost domain and/or under enhanced NOy emissions arriving at Finokalia from urban and ships plumes. © 2009 Elsevier Ltd. All rights reserved

    A comparison between modelled and measured mixing-layer height over Munich

    No full text
    An attempt is made to correlate the mixing heights, derived from ceilometer and Sodar measurements, to those simulated by different atmospheric boundary-layer parameterization schemes. The comparison is performed at two sites (one suburban and one rural) close to Munich, Germany for two spring and two winter days. It is found that, under convective conditions, the mixing height determined, by both Sodar and ceilometer, corresponds to the middle or the top of the entrainment zone, respectively, as calculated from the eddy-viscosity profiles. Under stable conditions, the measured mixing height is related to the height where eddy viscosities attain their minimum values (Sodar) or to the height of residual mechanical turbulence (ceilometer). During a foehn case with weak turbulence, the measured mixing height from both Sodar and ceilometer is better inferred by considering the eddy-viscosity profiles during daytime and the height of the low-level jet during nighttime. © Springer Science+Business Media B.V. 2009

    Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region

    No full text
    Optically thick smoke aerosol plumes originating from biomass burning (BB) in the southwestern African Savanna during the austral spring are transported westward by the free tropospheric winds to primarily overlie vast stretches of stratocumulus cloud decks in the southeast Atlantic. We evaluated the simulations of long-range transport of BB aerosol by the Goddard Earth Observing System (GEOS-5) and four other global aerosol models over the complete South African-Atlantic region using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations to find any distinguishing or common model biases. Models, in general, captured the vertical distribution of aerosol over land but exhibited some common features after long-range transport of smoke plumes that were distinct from that of CALIOP. Most importantly, the model-simulated BB aerosol plumes quickly descend to lower levels just off the western coast of the continent, while CALIOP data suggest that smoke plumes continue their horizontal transport at elevated levels above the marine boundary layer. This is crucial because the sign of simulated aerosol semidirect effect can change depending on whether the bulk of the absorbing aerosols is present within or above the cloud levels in a model. The levels to which the aerosol plumes get subsided and the steepness of their descent vary amongst the models and amongst the different subregions of the domain. Investigations into possible causes of differences between GEOS-5 and CALIOP aerosol transport over the ocean revealed a minimal role of aerosol removal process representation in the model as opposed to model dynamics. © 2017. American Geophysical Union. All Rights Reserved

    Aerosol chemistry above an extended archipelago of the eastern Mediterranean basin during strong northern winds

    No full text
    Detailed aerosol chemical predictions by a comprehensive model system (i.e. PMCAMx, WRF, GEOS-CHEM), along with airborne and ground-based observations, are presented and analysed over a wide domain covering the Aegean Archipelago. The studied period is 10 successive days in 2011, characterized by strong northern winds, which is the most frequently prevailing synoptic pattern during summer. The submicron aerosol load in the lower troposphere above the archipelago is homogenously enriched in sulfate (average modelled and measured submicron sulfate of 5.5 and 5.8 μg m-3, respectively), followed by organics (2.3 and 4.4 μg m-3) and ammonium (1.5 and 1.7 μg m-3). Aerosol concentrations smoothly decline aloft, reaching lower values (< 1 μg m-3) above 4.2 km altitude. The evaluation criteria rate the model results for sulfate, ammonium, chloride, elemental carbon, organic carbon and total PM10 mass concentrations as "good", indicating a satisfactory representation of the aerosol chemistry and precursors. Higher model discrepancies are confined to the highest (e.g. peak sulfate values) and lowest ends (e.g. nitrate) of the airborne aerosol mass size distribution, as well as in airborne organic aerosol concentrations (model underestimation ca. 50 %). The latter is most likely related to the intense fire activity at the eastern Balkan area and the Black Sea coastline, which is not represented in the current model application. The investigation of the effect of local variables on model performance revealed that the best agreement between predictions and observations occurs during high winds from the northeast, as well as for the area confined above the archipelago and up to 2.2 km altitude. The atmospheric ageing of biogenic particles is suggested to be activated in the aerosol chemistry module, when treating organics in a sufficient nitrogen and sulfate-rich environment, such as that over the Aegean basin. More than 70 % of the predicted aerosol mass over the Aegean Archipelago during a representative Etesian episode is related to transport of aerosols and their precursors from outside the modelling domain. © Author(s) 2015

    New particle formation in the southern Aegean Sea during the Etesians: Importance for CCN production and cloud droplet number

    No full text
    This study examines how new particle formation (NPF) in the eastern Mediterranean in summer affects CCN (cloud condensation nuclei) concentrations and cloud droplet formation. For this, the concentration and size distribution of submicron aerosol particles, along with the concentration of trace gases and meteorological variables, were studied over the central (Santorini) and southern Aegean Sea (Finokalia, Crete) from 15 to 28 July 2013, a period that includes Etesian events and moderate northern surface winds. Particle nucleation bursts were recorded during the Etesian flow at both stations, with those observed at Santorini reaching up to 1.5 × 104 particles cm-3; the fraction of nucleation-mode particles over Crete was relatively diminished, but a higher number of Aitken-mode particles were observed as a result of aging. Aerosol and photochemical pollutants covaried throughout the measurement period; lower concentrations were observed during the period of Etesian flow (e.g., 43-70 ppbv for ozone and 1.5-5.7 μg m-3 for sulfate) but were substantially enhanced during the period of moderate surface winds (i.e., increase of up to 32 for ozone and 140 % for sulfate). We find that NPF can double CCN number (at 0.1% supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number only by 12 %. Therefore, although NPF events may strongly elevate CCN numbers, the relative impacts on cloud droplet number (compared to pre-event levels) is eventually limited by water vapor availability and depends on the prevailing cloud formation dynamics and the aerosol levels associated with the background of the region. © Author(s) 2017

    Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign

    No full text
    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131±76 ppbv for CO, 62.5±4.1 ppbv for O3, 5.0±1.1 μg m-3 for sulfate, 4.7±0.9μg m-3 for organic mass and 0.5±0.2 μg m-3 for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. © 2014 Elsevier B.V
    corecore