45 research outputs found

    Comparative study of motor cortical excitability changes following anodal tDCS or high‐frequency tRNS in relation to stimulation duration

    Get PDF
    Background In this study, we investigate the capacity of two different non‐invasive brain stimulation (NIBS) techniques (anodal transcranial direct current stimulation (anodal tDCS) and high‐frequency transcranial random noise stimulation (hf‐tRNS)) regarding the relationship between stimulation duration and their efficacy in inducing long‐lasting changes in motor cortical excitability. Methods Fifteen healthy subjects attended six experimental sessions (90 experiments in total) and underwent both anodal tDCS of 7, 13, and 20 min duration, as well as high‐frequency 1mA‐tRNS of 7, 13, and 20 min stimulation duration. Sessions were performed in a randomized order and subjects were blinded to the applied methods. Results For anodal tDCS, no significant stable increases of motor cortical excitability were observed for either stimulation duration. In contrast, for hf ‐tRNS a stimulation duration of 7 min resulted in a significant increase of motor cortical excitability lasting from 20 to 60 min poststimulation. While an intermediate duration of 13 min hf‐tRNS failed to induce lasting changes in motor cortical excitability, a longer stimulation duration of 20 min hf‐tRNS led only to significant increases at 50 min poststimulation which did not outlast until 60 min poststimulation. Conclusion Hf‐tRNS for a duration of 7 min induced robust increases of motor cortical excitability, suggesting an indirect proportional relationship between stimulation duration and efficacy. While hf‐tRNS appeared superior to anodal tDCS in this study, further systematic and randomized experiments are necessary to evaluate the generalizability of our observations and to address current intensity as a further modifiable contributor to the variability of transcranial brain stimulation

    Anodal transcranial direct current stimulation sustainably increases EEG alpha activity in patients with schizophrenia

    Get PDF
    Abstract Aims Transcranial direct current stimulation (tDCS) applied to the prefrontal cortex has been frequently used to elicit behavioral changes in patients with schizophrenia. However, the interaction between prefrontal tDCS and electrophysiological changes remains largely uncharted. The present study aimed to investigate cortical electrophysiological changes induced by tDCS in frontal areas by means of repeated electroencephalography (EEG) in patients with schizophrenia. Methods In total, 20 patients with schizophrenia received 13 minutes of anodal tDCS (1 mA) applied to the left dorsolateral prefrontal cortex (DLPFC). Repeated resting EEG was recorded before (once) and following (at five follow‐up time‐bins) tDCS to trace post‐tDCS effects. We used sLORETA for source reconstruction to preserve the localization of brain signals with a low variance and to analyze frequency changes. Results We observed significant changes after the stimulation in areas highly connected with the stimulated DLPFC areas. The alpha 1 (8.5‐10.0 Hz) activity showed a highly significant, long‐lasting, increase for up to 1 hour after the stimulation in the postcentral gyrus (Brodmann area 2, 3, and 40). Significant yet unstable changes were also seen in the alpha‐2 frequency band precentral at 10 minutes, in the beta‐1 frequency band occipital at 20 minutes, and in the beta‐3 frequency band temporal at 40 minutes. Conclusion We were able to show that anodal tDCS can induce stable EEG changes in patients with schizophrenia. The results underline the potential of tDCS to induce long‐lasting neurophysiological changes in patients with schizophrenia showing the possibility to induce brain excitability changes in this population

    Self-love and sociability: the ‘rudiments of commerce’ in the state of nature

    Get PDF
    Istvan Hont’s classic work on the theoretical links between the seventeenth-century natural jurists Hugo Grotius and Samuel Pufendorf and the eighteenth-century Scottish political economists remains a popular trope among intellectual and economic historians of various stamps. Despite this, a common criticism levelled at Hont remains his relative lack of engagement with the relationship between religion and economics in the early modern period. This paper challenges this aspect of Hont’s narrative by drawing attention to an alternative, albeit complementary, assessment of the natural jurisprudential heritage of eighteenth-century British political economy. Specifically, the article attempts to map on to Hont’s thesis the Christian Stoic interpretation of Grotius and Pufendorf which has gained greater currency in recent years. In doing so, the paper argues that Grotius and Pufendorf’s contributions to the ‘unsocial sociability’ debate do not necessarily lead directly to the Scottish school of political economists, as is commonly assumed. Instead, it contends that a reconsideration of Grotius and Pufendorf as neo-Stoic theorists, particularly via scrutiny of their respective adaptations of the traditional Stoic theory of oikeiosis, steers us towards the heart of the early English ‘clerical’ Enlightenment

    The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka

    Get PDF
    This paper introduces the aims and scope of the RESET project (. RESponse of humans to abrupt Environmental Transitions), a programme of research funded by the Natural Environment Research Council (UK) between 2008 and 2013; it also provides the context and rationale for papers included in a special volume of Quaternary Science Reviews that report some of the project's findings. RESET examined the chronological and correlation methods employed to establish causal links between the timing of abrupt environmental transitions (AETs) on the one hand, and of human dispersal and development on the other, with a focus on the Middle and Upper Palaeolithic periods. The period of interest is the Last Glacial cycle and the early Holocene (c. 100-8 ka), during which time a number of pronounced AETs occurred. A long-running topic of debate is the degree to which human history in Europe and the Mediterranean region during the Palaeolithic was shaped by these AETs, but this has proved difficult to assess because of poor dating control. In an attempt to move the science forward, RESET examined the potential that tephra isochrons, and in particular non-visible ash layers (cryptotephras), might offer for synchronising palaeo-records with a greater degree of finesse. New tephrostratigraphical data generated by the project augment previously-established tephra frameworks for the region, and underpin a more evolved tephra 'lattice' that links palaeo-records between Greenland, the European mainland, sub-marine sequences in the Mediterranean and North Africa. The paper also outlines the significance of other contributions to this special volume: collectively, these illustrate how the lattice was constructed, how it links with cognate tephra research in Europe and elsewhere, and how the evidence of tephra isochrons is beginning to challenge long-held views about the impacts of environmental change on humans during the Palaeolithic. © 2015 Elsevier Ltd.RESET was funded through Consortium Grants awarded by the Natural Environment Research Council, UK, to a collaborating team drawn from four institutions: Royal Holloway University of London (grant reference NE/E015905/1), the Natural History Museum, London (NE/E015913/1), Oxford University (NE/E015670/1) and the University of Southampton, including the National Oceanography Centre (NE/01531X/1). The authors also wish to record their deep gratitude to four members of the scientific community who formed a consultative advisory panel during the lifetime of the RESET project: Professor Barbara Wohlfarth (Stockholm University), Professor JÞrgen Peder Steffensen (Niels Bohr Institute, Copenhagen), Dr. Martin Street (Romisch-Germanisches Zentralmuseum, Neuwied) and Professor Clive Oppenheimer (Cambridge University). They provided excellent advice at key stages of the work, which we greatly valued. We also thank Jenny Kynaston (Geography Department, Royal Holloway) for construction of several of the figures in this paper, and Debbie Barrett (Elsevier) and Colin Murray Wallace (Editor-in-Chief, QSR) for their considerable assistance in the production of this special volume.Peer Reviewe

    Haller und die AufklÀrung

    No full text
    corecore