651 research outputs found

    Sedimentological evidence for pronounced glacial‐interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene

    Get PDF
    The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (~500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial‐interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies

    Corticostriatal functional connectivity of bothersome tinnitus in single-sided deafness

    Get PDF
    Subjective tinnitus is an auditory phantom perceptual disorder without an objective biomarker. Bothersome tinnitus in single-sided deafness (SSD) is particularly challenging to treat because the deaf ear can no longer be stimulated by acoustic means. We contrasted an SSD cohort with bothersome tinnitus (TIN; N = 15) against an SSD cohort with no or non-bothersome tinnitus (NO TIN; N = 15) using resting-state functional magnetic resonance imaging (fMRI). All study participants had normal hearing in one ear and severe or profound hearing loss in the other. We evaluated corticostriatal functional connectivity differences by placing seeds in the caudate nucleus and Heschl’s Gyrus (HG) of both hemispheres. The TIN cohort showed increased functional connectivity between the left caudate and left HG, and left and right HG and the left caudate. Within the TIN cohort, functional connectivity between the right caudate and cuneus was correlated with the Tinnitus Functional Index (TFI) relaxation subscale. And, functional connectivity between the right caudate and superior lateral occipital cortex, and the right caudate and anterior supramarginal gyrus were correlated with the TFI control subscale. These findings support a striatal gating model of tinnitus and suggest tinnitus biomarkers to monitor treatment response and to target specific brain areas for innovative neuromodulation therapies

    Agency, qualia and life: connecting mind and body biologically

    Get PDF
    Many believe that a suitably programmed computer could act for its own goals and experience feelings. I challenge this view and argue that agency, mental causation and qualia are all founded in the unique, homeostatic nature of living matter. The theory was formulated for coherence with the concept of an agent, neuroscientific data and laws of physics. By this method, I infer that a successful action is homeostatic for its agent and can be caused by a feeling - which does not motivate as a force, but as a control signal. From brain research and the locality principle of physics, I surmise that qualia are a fundamental, biological form of energy generated in specialized neurons. Subjectivity is explained as thermodynamically necessary on the supposition that, by converting action potentials to feelings, the neural cells avert damage from the electrochemical pulses. In exchange for this entropic benefit, phenomenal energy is spent as and where it is produced - which precludes the objective observation of qualia

    Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator

    Get PDF
    Establishing how life can emerge from inanimate matter is among the grand challenges of contemporary science. Chemical systems that capture life’s essential characteristics—replication, metabolism and compartmentalization—offer a route to understanding this momentous process. The synthesis of life, whether based on canonical biomolecules or fully synthetic molecules, requires the functional integration of these three characteristics. Here we show how a system of fully synthetic self-replicating molecules, on recruiting a cofactor, acquires the ability to transform thiols in its environment into disulfide precursors from which the molecules can replicate. The binding of replicator and cofactor enhances the activity of the latter in oxidizing thiols into disulfides through photoredox catalysis and thereby accelerates replication by increasing the availability of the disulfide precursors. This positive feedback marks the emergence of light-driven protometabolism in a system that bears no resemblance to canonical biochemistry and constitutes a major step towards the highly challenging aim of creating a new and completely synthetic form of life. [Figure not available: see fulltext.]

    The cryptotephra record of the Marine Isotope Stage 12 to 10 interval (460–335 ka) at Tenaghi Philippon, Greece: Exploring chronological markers for the Middle Pleistocene of the Mediterranean region

    Get PDF
    Precise chronologies that allow direct correlation of paleoclimate archives are a prerequisite for deciphering the spatiotemporal characteristics of short-term climate variability. Such chronologies can be established through the analysis of tephra layers that are preserved in the respective sedimentary archives. Here we explore the yet untapped tephrochronological potential of the Eastern Mediterranean region for the Middle Pleistocene, specifically for the interval spanning Marine Isotope Stages (MIS) 12–10 (460–335 ka). High-resolution cryptotephra analysis was carried out on peat cores spanning the MIS 12–10 interval that have been recovered from the iconic climate archive of Tenaghi Philippon, NE Greece. Eighteen primary cryptotephras were identified, and major- and trace-element analyses of single glass shards from all cryptotephras were performed in order to correlate them with their eruptive sources. The results suggest origins from both Italian and Aegean Arc volcanoes. Specifically, one cryptotephra layer could be firmly correlated with the Cape Therma 1 eruption from Santorini, which makes it the first distal tephra finding for this eruptive event. While eight further cryptotephras could be tentatively correlated with their volcanic or even eruptive sources, the provenance of another nine cryptotephras as yet remains unknown. The relatively large number of cryptotephras that could not be assigned to specific volcanic sources and eruptive events reflects the still considerable knowledge gap regarding the geochronology and geochemistry of proximal tephra deposits from the Middle Pleistocene of the Central and Eastern Mediterranean regions. Due to the lack of well-dated Middle Pleistocene eruptions, we provide age estimates for all cryptotephra layers identified in the MIS 12–10 interval at Tenaghi Philippon based on high-resolution pollen data from the same cores. While eight of the identified cryptotephras were deposited within MIS 12 (~438–427 ka), one cryptotephra was deposited at the onset of MIS 11 (~419 ka), five cryptotephras during the younger part of MIS 11 (~391–367 ka), and four cryptotephras during MIS 10 (~359–336 ka). The high number of cryptotephras from multiple sources as recorded in the MIS 12–10 interval at Tenaghi Philippon highlights the key role of this archive for linking tephrostratigraphic lattices for the Middle Pleistocene of the Central and Eastern Mediterranean regions
    • …
    corecore