8 research outputs found

    Innovative potential of the European Union’s member states in 2017

    Get PDF
    Purpose: The aim of this paper is to evaluate the innovative potential of the European Union’s countries in 2017. Design/Methodology/Approach: The authors have proposed their methodology of measuring the innovative potential of the EU Member States. Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) was used to rank and evaluate countries’ ability to innovate with respect to internal sources of innovativeness. Findings: The analysis confirms moderate innovative capacity of the EU countries. The classification of countries on the account of their innovative potential in 2017 reveals some similarities to ranking of Global Innovation Index (Input Sub-Index). Practical Implications: The paper proves that the most innovative countries in the light of the European Innovation Scoreboard display the highest ability to innovate. Therefore, internal resources of financial and human character were found to influence the overall level of innovativeness of member states. European countries should benefit from developing their innovative potential in terms of national resources. Originality/Value: Most researchers adopt input and output approach to innovativeness because it represents a sophisticated phenomenon. Due to shortage of studies measuring solely the innovative potential of economies, the paper will contribute to the development of literature.peer-reviewe

    Temporal relationship between systemic endothelial dysfunction and alterations in erythrocyte function in a murine model of chronic heart failure

    Get PDF
    Endothelial dysfunction (ED) and red blood cell distribution width (RDW) are both prognostic factors in heart failure (HF), but the relationship between them is not clear. In this study, we used a unique mouse model of chronic HF driven by cardiomyocyte-specific overexpression of activated Gαq protein (Tgαq*44 mice) to characterise the relationship between the development of peripheral ED and the occurrence of structural nanomechanical and biochemical changes in red blood cells (RBCs).Systemic ED was detected in vivo in 8-month-old Tgαq*44 mice, as evidenced by impaired acetylcholine-induced vasodilation in the aorta and increased endothelial permeability in the brachiocephalic artery. ED in the aorta was associated with impaired nitric oxide (NO) production in the aorta and diminished systemic NO bioavailability. ED in the aorta was also characterised by increased superoxide and eicosanoid production. In 4- to 6-month-old Tgαq*44 mice, RBC size and membrane composition displayed alterations that did not result in significant changes in their nanomechanical and functional properties. However, 8-month-old Tgαq*44 mice presented greatly accentuated structural and size changes and increased RBC stiffness. In 12-month-old Tgαq*44 mice, the erythropathy was featured by severely altered RBC shape and elasticity, increased RDW, impaired RBC deformability, and increased oxidative stress (GSH/GSSH ratio). Moreover, RBCs taken from 12-month-old Tgαq*44 mice, but not from 12-month-old FVB mice, co-incubated with aortic rings from FVB mice, induced impaired endothelium-dependent vasodilation and this effect was partially reversed by an arginase inhibitor (ABH, 2(S)-amino-6-boronohexanoic acid).In the Tgαq*44 murine model of HF, systemic endothelial dysfunction accelerates erythropathy and, conversely, erythropathy may contribute to endothelial dysfunction. These results suggest that erythropathy may be regarded as a marker and a mediator of systemic endothelial dysfunction in HF. In particular, targeting RBC arginase may represent a novel treatment strategy for systemic endothelial dysfunction in HF. RBC arginase and possibly other RBC-mediated mechanisms may represent novel therapeutic targets for systemic endothelial dysfunction in HF.Endothelial dysfunction (ED) and red blood cell distribution width (RDW) both have prognostic value for heart failure (HF), but it is not known whether these pathologies are related. We comprehensively characterized endothelial and RBC functional status in a unique murine model of chronic heart failure with a prolonged time course of HF progression. Our results suggest that ED accelerates erythropathy and, conversely, erythropathy may contribute to ED. Accordingly, erythropathy in HF reflects ED and involves various changes (in functional, structural, nanomechanical, and biochemical levels) that could have diagnostic and therapeutic significance for HF
    corecore