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 2 

Abstract  49 

Aims 50 

Endothelial dysfunction (ED) and red blood cell distribution width (RDW) are both prognostic 51 

factors in heart failure (HF), but the relationship between them is not clear. In this study, we used a 52 

unique mouse model of chronic HF driven by cardiomyocyte-specific overexpression of activated Gαq 53 

protein (Tgαq*44 mice) to characterise the relationship between the development of peripheral ED and 54 

the occurrence of structural nanomechanical and biochemical changes in red blood cells (RBCs). 55 

Methods and Results 56 

Systemic ED was detected in vivo in 8-month-old Tgαq*44 mice, as evidenced by impaired 57 

acetylcholine-induced vasodilation in the aorta and increased endothelial permeability in the 58 

brachiocephalic artery. ED in the aorta was associated with impaired nitric oxide (NO) production in the 59 

aorta and diminished systemic NO bioavailability. ED in the aorta was also characterised by increased 60 

superoxide and eicosanoid production. In 4- to 6-month-old Tgαq*44 mice, RBC size and membrane 61 

composition displayed alterations that did not result in significant changes in their nanomechanical and 62 

functional properties. However, 8-month-old Tgαq*44 mice presented greatly accentuated structural and 63 

size changes and increased RBC stiffness. In 12-month-old Tgαq*44 mice, the erythropathy was 64 

featured by severely altered RBC shape and elasticity, increased RDW, impaired RBC deformability, 65 

and increased oxidative stress (GSH/GSSH ratio). Moreover, RBCs taken from 12-month-old Tgαq*44 66 

mice, but not from 12-month-old FVB mice, co-incubated with aortic rings from FVB mice, induced 67 

impaired endothelium-dependent vasodilation and this effect was partially reversed by an arginase 68 

inhibitor (ABH, 2(S)-amino-6-boronohexanoic acid). 69 

 70 

Conclusion  71 

In the Tgαq*44 murine model of HF, systemic endothelial dysfunction accelerates erythropathy 72 

and, conversely, erythropathy may contribute to endothelial dysfunction. These results suggest that 73 

erythropathy may be regarded as a marker and a mediator of systemic endothelial dysfunction in HF. In 74 

particular, targeting RBC arginase may represent a novel treatment strategy for systemic endothelial 75 

dysfunction in HF. RBC arginase and possibly other RBC-mediated mechanisms may represent novel 76 

therapeutic targets for systemic endothelial dysfunction in HF.  77 

 78 

Translational perspective  79 

 80 

Endothelial dysfunction (ED) and red blood cell distribution width (RDW) both have prognostic 81 

value for heart failure (HF), but it is not known whether these pathologies are related. We 82 

comprehensively characterized endothelial and RBC functional status in a unique murine model of 83 

chronic heart failure with a prolonged time course of HF progression. Our results suggest that ED 84 

accelerates erythropathy and, conversely, erythropathy may contribute to ED. Accordingly, 85 

erythropathy in HF reflects ED and involves various changes (in functional, structural, nanomechanical, 86 

and biochemical levels) that could have diagnostic and therapeutic significance for HF.  87 

 88 

 89 
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Heart Failure, Endothelial dysfunction, Red Blood Cells, Erythropathy 91 
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1. Introduction 96 

 Heart failure (HF) is an outcome of various primary and secondary incidents; in the advanced stage, 97 

it results not only in impaired cardiac function but also in the development of endothelial dysfunction 98 

(ED) in the peripheral circulation 1 as well as alterations in RBC function 2. However, the relationship 99 

between ED and the functional, structural, nanomechanical, and biochemical properties of RBCs in HF 100 

is not clear.  101 

In various diseases, including HF, ED is characterised by impaired production of NO and increased 102 

production of O2
•- 1 as well as other changes in the endothelial phenotype 1, 3. Consistent with the 103 

oxidative stress-related mechanisms of ED, antioxidant treatment strategies, including vitamin C and 104 

NADPH oxidase 2 (NOX-2) and xanthine oxidase (XO) inhibitors, have been shown to improve 105 

endothelial function in HF 4-6. Various mechanisms of peripheral ED have been proposed, including a 106 

decrease in shear stress linked to cardiac failure, which leads to the downregulation of endothelial nitric 107 

oxide synthase (eNOS) expression and the reduction of NO production alongside increased oxidative 108 

stress 3, 7. Several contributors to ED in HF have been proposed: neurohormonal activation, with major 109 

roles of angiotensin II (Ang II) 3, 8 and mineralocorticoid receptor (MR)-dependent mechanisms 7; 110 

hyperactivation of the sympathetic system 1, 9; and proinflammatory cytokines, including tumour 111 

necrosis factor alpha (TNFα) and interleukin (IL)-6 1. Notably, the most effective pharmacological 112 

treatments for HF patients, such as renin–angiotensin system (RAS) inhibitors, which include 113 

angiotensin-converting enzyme (ACE) inhibitors 10, Ang II type 1 (AT1) receptor antagonists 8, and MR 114 

antagonists, 11 improved endothelial function in the peripheral circulation of HF patients. Improvement 115 

in peripheral ED by RAS-based treatment strategies and other treatment strategies has therapeutic 116 

benefits for HF 10, including increased exercise tolerance in HF patients 12.  117 

ED in peripheral circulation may have prognostic value independent of whether the HF is ischemic 118 

or non-ischemic 13. However, although abundant literature exists related to peripheral ED in HF of 119 

ischemic origin 3, 14, little is known about the mechanism of ED in non-ischemic HF. Indeed, some 3, 15 120 

but not all 3, 16 authors have confirmed the development of ED in HF of non-ischemic origin.  121 

Interestingly, although RBCs display physiological size heterogeneity, increased red cell 122 

distribution width (RDW) is an independent predictor of the short- and long-term prognosis of HF 17, 18, 123 

implicating the role of altered function of RBCs in the pathophysiology of HF. Several reciprocal 124 

mechanisms between the endothelium and RBCs maintain the haemostatic balance and safeguard the 125 

cardiovascular system, whereas alterations of this balance may lead to vascular pathologies such as ED 126 
19. For example, functional alterations in RBCs induced by hyperglycaemia, diabetes 19, a high-fat diet 127 
20, malaria, and hemoglobinopathies (e.g., sickle cell diseases) contribute to the pathomechanisms of ED 128 
19, and various mechanisms have been proposed for these RBC functional changes 21, 22. 129 

However, despite the knowledge that ED and RDW are both prognostic factors in HF, the 130 

relationship between alterations in RBC function and the development of peripheral ED in HF is not 131 

clear. Although patients with HF present alterations in several hemorheological properties as well as 132 

impairment of peripheral blood flow 23, it is not known whether these pathologies are related, whether 133 

they occur simultaneously, or whether one precedes the other. To the best of our knowledge, the link 134 

between RBC alterations and endothelial function in HF has not been defined previously.  135 

 To fill this gap, we characterised the development of peripheral ED and the progression of 136 

functional, structural, nanomechanical, and biochemical alterations of RBCs, taking advantage of a 137 

unique murine model of chronic HF (Tgαq*44 mice) generated by cardiomyocyte-specific 138 

overactivation of the Gαq protein, which imitates excessive neurohormonal cardiac activation 24. This 139 

model is relevant to the pathophysiology of human HF and is characterised by prolonged HF 140 

progression, with distinct early and late stages of the disease that have been described previously 25, 26. 141 
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Thus, this model seemed well suited to characterise the temporal associations between alterations in 142 

endothelial and RBC function, two phenomena involved in HF pathophysiology. 143 

 144 

2. Methods 145 

2.1. Animals  146 

Female Tgαq*44 mice, a model of heart failure (HF) initially developed by Mende et al. 24, 27, 147 

and FVB (wild-type) mice were bred in the Animal Laboratory of the Medical Research Centre of 148 

the Polish Academy of Sciences (Warsaw, Poland). Transgenic = αq*44 mice based on the FVB 149 

strain express an HA epitope-tagged, constitutively active mutated αq (HAα*q) under the control of 150 

the α-MHC promoter and represent a unique model of chronic HF 24, 27. All animal procedures were 151 

in accordance with the Guide for the Care and Use of Laboratory Animals published by the US 152 

National Institutes of Health (NIH Publication No. 85–23, revised 1985) as well as with the local 153 

Ethical Committee on Animal Experiments in Krakow. Mice were fed a standard chow diet and kept 154 

in 12:12 light–dark conditions.  155 

2.1 Assessment of endothelium-dependent vasodilation and endothelial permeability  156 

in vivo by magnetic resonance imaging  157 

Endothelial function and permeability in vivo were assessed as described previously 28-30. 158 

Briefly, endothelium-dependent vasodilation in vivo was assessed by measuring the response to 159 

acetylcholine (Ach, Sigma-Aldrich, Poznań Poland: 50 μl, 16.6 mg/kg, i.p.) in the abdominal aorta 160 

(AA) and by flow-mediated dilatation (FMD) in response to reactive hyperaemia (after 5 min vessel 161 

occlusion) in the femoral artery (FA) 29. Changes in endothelial function were expressed as changes 162 

in the vessel volume 30. Moreover, changes in endothelial permeability were assessed by relaxation 163 

time (T1) map measurements in the brachiocephalic artery (BCA) using the variable flip angle 164 

technique 31, 32 before and 30 minutes after intravenous administration of a unique formulation of 165 

gadolinium contained in the liposome (gadodiamide in the liposome, concentration of formulation: 166 

(287 mg/mL, 4.5 mL/kg, intravenous (i.v.)).  167 

2.2 Aorta isolation  168 

Mice were euthanized intraperitoneally with a mixture of ketamine and xylazine in doses of 100 169 

and 10 mg/kg body weight (b.w.), respectively. Subsequently, the aorta was removed and placed in 170 

cold Krebs–Henseleit solution (KB) bubbled with a 95% O2/5% CO2 mixture (pH = 7.4). Aortic 171 

segments used for NO, superoxide, or eicosanoid production were immediately placed in fresh KB 172 

or frozen at −80 °C. 173 

2.2.1 Assessment of endothelium-dependent and -independent vasodilation  174 

ex vivo in wire myograph system 175 

Aortic rings were mounted in a Mulvany myograph system (620 M, Danish Myo Technology, 176 

Denmark), followed by assessment of the endothelium-dependent and independent vasodilation ex 177 

vivo, carried out as previously described 33. To study RBC-induced endothelial dysfunction, RBCs 178 

taken from 12-month-old Tgαq*44 or 12-month-old FVB mice were isolated 34, diluted with serum-179 

free culture medium to a hematocrit of 5%, and were incubated with aortic rings isolated from 12-180 

month-old Tgαq*44 or 12-month-old FVB mice in cell culture incubator at 37 °C with 5% carbon 181 

dioxide for 18 h in the absence or presence of 100 uM of 2(S)-amino-6-boronohexanoic acid (ABH). 182 

2.2.2 Assessment of eicosanoid production in isolated aortic rings by LC-MS/MS 183 

Aortic rings were added to a 24-well plate containing KB. The plate was placed into a BIO-V 184 

gas treatment chamber (Noxygen Science, Elzach, Germany), where it remained for 15 min under 185 

CO2 flow at 37 °C. After pre-incubation, the aortic rings were placed into 500 mL of fresh KB, and 186 

100 mL samples of the incubation buffer were taken after 3 min and 45 min of incubation. The 187 
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concentrations of 6-keto prostaglandin F1α (6-keto PGF1α), as well as prostaglandin E2 and D2 (PGE2 188 

and PGD2) and 15-hydroxyeicosatetraenoic acid (15-HETE) in the aorta effluents, were examined 189 

by a liquid chromatograph UFLC Nexera (Shimadzu, Kyoto, Japan) coupled to a triple quadrupole 190 

mass spectrometer QTRAP 5500 (SCIEX, Framingham, MA, USA) following the methodology 191 

previously described 35. The biosynthesis of PGI2 and TXA2 were assessed based on the 192 

concentration of their stable metabolites 6-keto PGF1a and TXB2, respectively. Results are presented 193 

as the difference between the concentration assessed after 3 min and 45 min incubation.   194 

2.2.3 Assessment of NO and O2
•- production in the isolated aorta by electron paramagnetic 195 

resonance spectroscopy 196 

Nitric oxide production in the isolated aorta was measured by electron paramagnetic resonance 197 

(EPR) with the cell-permeable NO spin trapping agent diethyldithiocarbamate (DETC), as described 198 

previously 36.  199 

2.2.4 Assessment of TNFα and IL-1β gene expression by qRT-PCR 200 

Total RNA was extracted from the aorta of Tgaq*44 and FVB mice with TRI Reagent (Sigma-201 

Aldrich, St. Louis, MO, USA) following the manufacturer’s procedures, as described previously 37.  202 

2.3 Blood and RBC analysis 203 

Depending on the applied method of analysis the blood samples, isolated RBCs or RBC 204 

membranes were studied. Whole blood samples were collected from the right ventricle using 205 

a syringe containing additional anticoagulant (heparin). The details of RBC isolation from the whole 206 

blood and RBC membrane isolation (prepared by overnight freezing of RBCs suspended in 0.9% 207 

NaCl, haematocrit = 10%) are presented in the Supplemental Materials (SM).  208 

2.3.1 Blood count, blood biochemistry, and determination of NO metabolites  209 

A whole blood sample was used for blood count analysis using an automatic haematology 210 

analyser ABC Vet (Horiba, Kyoto, Japan). Plasma obtained after centrifugation (acceleration: 1000 211 

×g, run time: 10 min, 4 °C) was used for measuring the lipid profile with an ABX Pentra biochemical 212 

analyser (Horiba Medical Kyoto, Japan).  213 

Measurement of nitrate (NO3
−) and nitrite (NO2

−) concentrations in the plasma was performed 214 

using an ENO-20 NOx analyser (Eicom Corp., Kyoto, Japan), applying a liquid chromatography 215 

method with post-column derivatisation using Griess reagent 38. The packed RBCs remaining after 216 

centrifugation were used for GSH and GSSG concentration measurement as well as nitrosyl 217 

haemoglobin (HbNO) detection with EPR spectroscopy 39.  218 

2.3.2 Assessment of RBC shape and nanomechanics by AFM 219 

Erythrocyte shape and elasticity were measured using a NanoWizard 3 (JPK Instruments, 220 

Berlin, Germany) AFM microscope. All measurements were performed using a pyramidal AFM 221 

probe attached to V-shaped silicon nitride cantilevers with a spring constant of 0.01 N/m (MLCT-222 

C, Veeco Probes, Camarillo, CA, USA). The force mapping mode was used for both topography 223 

and elasticity measurements. The elastic moduli of RBCs were calculated using the Hertz–Sneddon 224 

model with the approximation for a paraboloidal probe. Data were analysed using JPKSPM Data 225 

Processing software. The aspect ratio was defined as the ratio between two perpendicular main axes 226 

of the RBCs (i.e., the length and width of the cell) 40. 227 

2.3.3 Assessment of RBC deformability by Rheoscan 228 

Erythrocyte deformability was measured using a microfluidic RheoScan AnD 300 229 

(RheoMeditech, Seoul, South Korea) following the protocol suggested by the manufacturer. RBC 230 

deformation was quantified at a shear stress of 20 Pa in terms of the maximum elongation index 231 

(EImax) 40. 232 
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2.3.4 Assessment of RBC by flow cytometry  233 

RBCs and reticulocytes were analysed with a BD LSR II flow cytometer (BD Biosciences, 234 
Oxford, UK) and stained against anti-mouse TER-119 PerCP/Cy5.5 (BioLegend, San Diego, United 235 
States) and anti-mouse CD71 APC (BioLegend, San Diego, United States) antibodies and annexin V 236 
FITC (antibody dilution 1:100, stained for 30 min at room temperature). For each sample 100 000 000 237 
events were acquired in log mode for forward side scatter (FSC), side scatter (SSC) and fluorescent 238 
signals. Data were analysed using BD FACSDiva Software (BD Biosciences, Oxford, UK). RBC and 239 
reticulocytes were gated according to their characteristic log FCS, log SSC, and fluorescent signals.   240 

2.3.5  Assessment of GSH and GSSG concentration in RBCs by capillary electrophoresis  241 

GSH and GSSG concentrations were measured using a P/ACE MDQ capillary electrophoresis 242 

(CE) system (Beckman Coulter, Fullerton, CA, USA) with 32 Karat software (ver. 8.0, Beckman 243 

Coulter, Fullerton, CA, USA) as previously described 41.  244 

2.3.6 Assessment of biochemical content of RBC membranes by Raman spectroscopy and 245 

Fourier transform infrared spectroscopy–attenuated total reflectance  246 

Isolated RBC membranes were deposited on CaF2 slides, air-dried for 30 min, and examined 247 

with Raman spectroscopy (RS) followed by Fourier transform infrared spectroscopy–attenuated 248 

total reflectance (FTIR–ATR). The exact methodology of these measurements and data analysis 249 

were reported and validated in our previous studies40, 42. 250 

Details of methods are given in SM.  251 

2.4 Statistical analysis 252 

Statistical analyses were performed using GraphPad Prism 8.4 (GraphPad Software) software. 253 

The results are presented as box plots (median, Q1, Q3, interquartile range, and outliers). Tgαq*44 254 

mice in different phases of HF were compared with age-matched control groups and analysed using 255 

two-way ANOVA. The normality of the distribution and homogeneity of variance were tested using 256 

the Shapiro–Wilk and F-tests, respectively. When these assumptions were violated, nonparametric 257 

tests were performed (Kruskal–Wallis ANOVA). Probability values (P) of less than 0.05 were 258 

considered statistically significant. 259 

 260 

3. Results 261 

3.1 Development of systemic endothelial dysfunction in Tgαq*44 mice, in vivo MRI-based 262 

measurements  263 

MRI-based assessment of endothelium-dependent response in vivo revealed that in 8-month-old 264 

Tgαq*44 mice, acetylcholine (Ach)-induced vasodilation in the abdominal aorta (AA) was impaired, 265 

whereas in older mice (10- to 12-month-old Tgαq*44 mice), Ach-induced vasodilation was completely 266 

lost and changed to vasoconstriction (Fig. 1A, p < 0.05). ED in 8-month-old Tgαq*44 mice was 267 

confirmed by increased endothelial permeability measured in vivo by MRI with the use of the Npx50 268 

parameter of endothelial permeability as described previously 43. The T1 signal near the BCA lumen 269 

after intravenous injection of gadolinium-containing liposomes was increased in Tgαq*44 mice aged 8 270 

months and older compared with age-matched FVB mice (Fig. 1B). By contrast, flow-mediated 271 

vasodilation (FMD) in the FA was fully preserved in 8-month-old Tgαq*44 mice compared with that in 272 

age-matched FVB mice. FMD in the FA was also slightly impaired in 12-month-old Tgαq*44 mice, but 273 

this difference did not reach statistical significance (Fig. 1C). 274 

3.2 Development of ED in the aorta of Tgαq*44 mice; ex vivo measurements  275 

In 10- and 12-month-old Tgαq*44 mice, but not 6- and 8-month-old Tgαq*44 mice, Ach-induced 276 

endothelium-dependent vasodilation was decreased compared with the age-matched FVB mice (Fig. 277 

1D–1G), whereas endothelium-independent vasodilation induced by sodium nitroprusside (SNP) was 278 

fully preserved in all experimental groups of Tgαq*44 mice and age-matched FVB mice (Fig. 1H–1K).  279 
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3.3 Systemic bioavailability of NO in Tgαq*44 mice 280 

Systemic ED in Tgαq*44 mice was not associated with a reduction in the NO2
− concentration in 281 

plasma. However, the NO3
− plasma concentration decreased in 10- to 12-month-old Tgαq*44 mice 282 

compared with that of FVB mice (Table 1). In contrast to the lack of decreased plasma NO2
− 283 

concentration, the HbNO content in RBCs substantially decreased in 12-month-old Tgαq*44 mice 284 

compared with that in the RBCs of age-matched FVB mice (Table 1). Tgαq*44 mice did not display 285 

any changes in blood biochemistry compared with age-matched FVB mice until the age of 12 months, 286 

when the plasma concentration of the urea significantly increased, whereas the total cholesterol (TC) 287 

and HDL cholesterol plasma levels modesty decreased in Tgαq*44 mice compared with the levels in 288 

FVB mice (Table 1).  289 

3.4 Alterations in NO/O2
•- balance and in eicosanoid production in the aorta of Tgαq*44 mice  290 

ED in the aorta of 12-month-old Tgαq*44 mice was accompanied by a decrease in stimulated NO 291 

production in ex vivo aortas measured by EPR (Fig. 2A) compared with the age-matched FVB mice. 292 

Furthermore, impairment of endothelial functional response in the aorta was associated with increased 293 

O2
•- production in 12-month-old Tgαq*44 mice compared with that in age-matched FVB (Fig. 2B). 294 

In 12-month-old Tgαq*44 mice, but not in younger Tgαq*44 mice, the production of 6-keto 295 

PGF1α, PGE2, PGD2, and 15-HETE in the aorta was higher than in age-matched FVB mice (Fig. 2C–F). 296 

However, TNFα (Fig. 2G) and IL-1β (Fig. 2H) mRNA gene expression in the aorta did not differ 297 

between the 12-month-old Tgαq*44 mice and age-matched FVB mice.  298 

3.5 Basic characterisation of alterations in RBs in Tgαq*44 mice 299 

Alterations in RBC indices were not associated with significant differences in haemoglobin (HGB), 300 

haematocrit (HCT), or white blood cell (WBC) and platelet (PLT) counts between Tgαq*44 mice and 301 

age-matched FVB mice (Table 1). Mean corpuscular haemoglobin (MCH) and mean corpuscular 302 

haemoglobin concentration (MCHC) were lower in 8- to 12-month-old Tgαq*44 mice than in age-303 

matched FVB mice, but not in the early stage of HF (Table 1), whereas mean corpuscular volume (MCV) 304 

was significantly lower in 4- to 12-month-old Tgαq*44 mice than in age-matched FVB mice (Figure 305 

3A). RDW was significantly increased in 10- to 12-month-old Tgαq*44 mice (Fig. 3B) compared with 306 

that in age-matched FVB mice. There was no statistically significant difference in the extent of 307 

reticulocytosis between Tgαq*44 and FVB mice (Fig. 3C). The annexin V staining did not differ 308 

between Tgαq*44 and FVB mice at the age of 4 months and was slightly decreased in 12-month-old 309 

Tgαq*44 mice compared with that in age-matched FVB mice (Fig. 3D).  310 

Total glutathione, GSH, and GSSG in RBCs did not show statistically significant differences 311 

between Tgαq*44 mice and FVB mice (data not shown), but the GSH/GSSG ratio was significantly 312 

lower in 12-month-old Tgαq*44 mice compared with that in age-matched FVB mice (Fig. 3E). RBC 313 

deformability measured at a high shear stress (20 Pa) displayed a marked decrease in 12-month-old 314 

Tgαq*44 mice compared with that in age-matched FVB mice (Fig. 3F).  315 

3.6 Characterisation of alterations in topography and nanomechanics of RBCs in Tgαq*44 mice 316 

by AFM  317 

The examples of RBC images in Fig. 4 reflect high variability of RBC shape during HF progression, 318 

from a normal biconcave shape to discocytes and spherocytes with irregular symmetry. In the control 319 

sample from 4-month-old FVB mice, a characteristic biconcave or doughnut shape of RBCs was 320 

observed. In 12-month-old FVB mice (Fig. 4B), the deformation of the blood cells was manifested by a 321 

slight loss of symmetry in the height of the blood cells. In Tgαq*44 mice, more pronounced changes in 322 

RBC shape were observed (Fig. 4C–H). In the youngest mice, a change in the shape of the RBCs was 323 

manifested either by an increase in the central part of the blood cell or a large change in the RBC height 324 

profile symmetry. In 8-month-old Tgαq*44 mice, significant cell deformation resulting in aspect ratio 325 
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modification and diminished biconcave shape were noted. These changes were even more pronounced 326 

in 12-month-old Tgαq*44 mice.  327 

The quantitative results of the aspect ratio are presented in Fig. 5A, and the measured cell elastic 328 

moduli are presented in Fig. 5B. In 8-, 10-, and 12-month-old Tgαq*44 mice, both parameters were 329 

significantly increased compared with the parameters in age-matched control mice. In 4- and 6-month-330 

old Tgαq*44 mice, the differences did not reach statistical significance. Interestingly, there was a 331 

significant negative correlation between endothelial function (measured in vivo by MRI) and RBC 332 

elasticity (measured by AFM) in Tgαq*44 mice, and this correlation was not observed in FVB mice 333 

(Fig. 5C). As shown in Fig. 5D, the increased RBC aspect ratio was correlated with increased stiffness 334 

in both Tgaq*44 and FVB mice along with ageing; however, Tgaq*44 mice displayed a marked shift 335 

towards a higher aspect ratio and a higher elastic moduli value. 336 

3.7 Effects of RBCs isolated from Tgαq*44 mice during early and end-stage HF on endothelium-337 

dependent vasodilation, ex vivo measurements 338 

As shown in Fig. 5E, RBCs isolated from 12-month-old Tgαq*44 mice that were coincubated with 339 

aortic rings induced the impairment of endothelium-dependent vasodilation, whereas endothelial-340 

independent vasodilation was preserved. By contrast, RBCs isolated from 12-month-old FVB mice did 341 

not impair the endothelial function in the aortic rings (Fig. 5E). Interestingly, in the presence of ABH 342 

(100 μM), an inhibitor of arginase, detrimental effect of RBCs taken from 12-month-old Tgαq*44 mice 343 

on endothelial function in the aorta was prevented. The effect of ABH was significant only for the 344 

highest concentration of Ach (10 μM), but there were no effects of ABH on SNP-induced relaxation 345 

(Fig. 5F and 5H).   346 

3.8 Characterisation of alterations in biochemical contents of RBC membranes in Tgαq*44 347 

mice by vibrational spectroscopy 348 

 In the RBC membranes of Tgαq*44 mice compared with age-matched FVB mice, FTIR-based 349 

analysis revealed that stretching vibrations of the =CH groups (band at 3013 cm−1) and antisymmetric 350 

stretching vibrations of the PO2
– groups (band at 1235 cm−1) differed significantly, indicating a reduction 351 

in phospholipid content (Fig. 6A) and a decrease in the unsaturation of membrane lipids (Fig. 6D). These 352 

changes were statistically significant in 4-month-old Tgαq*44 mice compared with FVB mice, and a 353 

similar degree of difference was observed in 12-month-old Tgαq*44 mice compared with FVB mice. 354 

RS did not reveal changes in total lipid proteins (Fig. 6C) or the fraction of esters, including cholesterol 355 

esters (Fig. 6B and F), in RBC membranes obtained from 4- and 12-month-old Tgαq*44 compared with 356 

age-matched FVB mice, whereas the overall protein content did not undergo changes (Fig. 6E) as 357 

determined by FTIR and RS-based assessment.  358 

 359 

4. Discussion 360 

 361 

In the present work, we used a comprehensive methodology to assess the endothelial and RBC 362 

functional status and characterise the temporal relationships between the development of ED and the 363 

development of erythropathy in Tgαq*44 mice, a unique murine model of chronic HF with a prolonged 364 

time course of the HF progression. In contrast to most animal models, in which the transition from 365 

compensated to uncompensated chronic heart failure (CHF) is relatively rapid, the Tgαq*44 murine 366 

model is characterised by a delayed progression to end-stage heart failure 24-26, 44. The prolonged window 367 

of HF progression in Tgαq*44 mice from adaptive to end-stage HF allowed us to discover that RBC 368 

alterations occurred very early in HF pathophysiology and progressed substantially with HF 369 

progression. In particular, HF-linked erythropathy in Tgαq*44 mice accelerated substantially and was 370 

correlated with the progression of systemic ED. Increased RBC stiffness assessed by AFM was 371 

correlated with impaired endothelial function assessed in vivo by MRI. Finally, RBCs in late-stage 372 

erythropathy induced ED when co-incubated with aorta samples from FVB mice, whereas RBCs in early 373 
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erythropathy stages did not. These results suggest a possible reciprocal relationship between RBC 374 

alterations and endothelial function in HF: systemic ED accelerates erythropathy and, conversely, 375 

erythropathy may contribute to ED. Such a reciprocal relationship was previously postulated to occur 376 

in other diseases 19 but was not previously characterized in HF.  377 

The major advantage of our experimental approach was that it assessed endothelial function by 378 

the application of an MRI-based method in vivo, a method that was validated in our previous studies 28, 379 
29, 43. This approach appeared to be more sensitive for detecting the early phase of ED (in 8-month-old 380 

Tgαq*44 mice) compared with classical isolated vessel studies ex vivo (in 10-month-old Tgαq*44 mice) 381 

and the direct measurement of NO/O2
•- balance (in 12-month-old Tgαq*44 mice). Using our 382 

comprehensive methodological approach, we demonstrated that systemic ED was present in 8-month-383 

old Tgαq*44 mice (impaired Ach-induced vasodilation and increased endothelial permeability in vivo) 384 

and progressed further in 10-month-old Tgαq*44 mice, as evidenced by impaired Ach-induced 385 

vasodilation with preserved SNP response in the aorta ex vivo. Furthermore, in 12-month-old Tgαq*44 386 

mice, impaired NO production and increased O2
•- production, phenomena that have been reported 387 

previously in HF 3-5, were observed through biochemical measurements of the aorta.  388 

Interestingly, in contrast to the impaired endothelial function in the aorta, the FMD response in the 389 

FA in vivo seemed to be largely preserved until end-stage HF. Previous studies have demonstrated 390 

heterogeneity in the response of the aorta and the FA in ageing and diabetes 45, 46 As age increased, 391 

relaxation in response to Ach was reduced in the aorta, whereas in the FA response was fully preserved 392 
47. In addition, in db/db mice, the vasodilatory response to Ach was impaired in the FA but not in the 393 

aorta 48. Finally, in a model of HF induced by myocardial infarction 45, 46  FMD in the FA was heavily 394 

impaired, while the response to Ach was only moderately affected. Comparing the results of these 395 

studies with our findings underscores the heterogeneous response of the endothelium to HF progression 396 

in the conduit vessels in ischemic and non-ischemic HF and reveals a difference in response depending 397 

on the vascular bed and stimulus used 46, 49. 398 

Interestingly, impaired Ach-induced NO-dependent vasodilation in the aorta was associated with a 399 

progressive reduction in plasma concentration of nitrate (8- to 12-month-old Tgαq*44 mice), whereas 400 

the concentration of nitrite remained unchanged, which suggests the activation of the nitrate–nitrite–NO 401 

reductive pathway, an alternative compensatory source that maintains NO bioavailability 2. However, 402 

as the HbNO content in RBCs substantially decreased in 12-month-old Tgαq*44 mice in late-stage HF 403 

in this model, the systemic NO bioavailability eventually fell substantially despite the activation of the 404 

nitrite reductive pathway.  405 

Concomitantly, in 12-month-old Tgαq*44 mice, ED was characterised by increased generation of 406 

cyclooxygenase-derived eicosanoids, such as PGD2 and PGI2 (assessed as its metabolite 6-keto PGF1α), 407 

which may play a compensatory role 50. In turn, increased vascular PGE2 could contribute to vascular 408 

inflammation and ED 37.  409 

The comprehensive nature of RBC analysis based on the numerous methods, including AFM and 410 

vibrational spectroscopy, adapted in the present work allowed us to obtain unprecedented insight into 411 

structural, functional, nanomechanical, and biochemical changes in RBCs related to the progression of 412 

ED in HF. We demonstrated that RBCs displayed mild alterations as early as 4 months old in Tgαq*44 413 

mice. These changes included a reduction in MCV, suggesting early RBC anisocytosis in HF; a slightly 414 

altered aspect ratio (assessed by AFM topography), indicating an early RBC shape alteration; and a 415 

decrease in phospholipid content and unsaturated lipids in RBC membranes (assessed by vibrational 416 

spectroscopy), implying early RBC membranes changes. Still, these changed did not result in 417 

statistically significant alterations in the nanomechanics or deformability of RBCs at this stage of HF. 418 

However, even at this HF stage, some RBCs displayed notable changes in elasticity. Notably, several 419 

parameters of erythropathy were significantly accentuated in 8-month-old Tgαq*44 mice, including 420 
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structural changes (increased AFM-based aspect ratio indicative of the presence of ellipsoidal RBCs) 421 

and nanomechanical alterations (increased RBC elasticity modulus). In 12-month-old Tgαq*44 mice, 422 

HF-linked erythropathy was characterised not only by severely altered RBC shape and elasticity but 423 

also by increased RDW, impaired RBC deformability, and oxidative stress (GSH/GSSH ratio).  424 

Taken together, in Tgαq*44 mice, HF-linked erythropathy was characterised by early changes 425 

in RBC size and membrane composition but preserved RBC function, which could suggest early changes 426 

in erythropoiesis, most likely of a compensatory nature 51. HF-linked erythropathy involved altered 427 

shape and elasticity (AFM topography and nanoindentation), altered biochemical RBC homeostasis 428 

(oxidant stress), and, finally, impaired deformability of RBCs tested using the clinically used Rheoscan 429 

system (see Fig. 7). Of note, alterations in RBC status based on Rheoscan, GSH/GSSG, and RDW 430 

parameters were detected at very late stages of erythropathy, in contrast to alterations in RBC 431 

membranes and changes in their nanomechanical profile detected in the early phase of HF. Interestingly, 432 

alterations in the biochemical profile of RBC membranes and the size of RBCs shown here displayed a 433 

distinct pattern compared with atherosclerosis 40 or HF of ischemic origin 52. In a previous study by our 434 

group 40 using ApoE/LDLR−/− mice, phospholipids and unsaturated lipids decreased with the progression 435 

of atherosclerosis; however, the total lipid content and MCV was higher, without significant differences 436 

in RDW, in ApoE/LDLR−/− mice compared with age-matched controls. In the current study, levels of 437 

phospholipids and lipid unsaturation in RBC membranes were significantly lower even in the early 438 

phase of HF in 4- and 6-month-old Tgαq*44 mice, without changes in total lipid content. MCV values 439 

were reduced and further decreased with the progression of HF, whereas a significant increase in RDW 440 

values was observed in the late stage of HF in 12-month-old Tgαq*44 mice only. These results agree 441 

with the accepted notion that the modification of the lipid composition in the RBC membranes results 442 

in changes in their shape and elasticity. Furthermore, our results revealed that HF-related erythropathy 443 

displayed different types of RBC alterations compared with atherosclerosis-related changes 40.  444 

Most importantly, our results showed that HF-linked erythropathy in Tgαq*44 mice was 445 

temporarily linked with the progression of ED. Moreover, the progression of erythropathy seems to be 446 

correlated with progressive impairment of endothelial function (alterations in RBC elasticity were 447 

correlated with progressive impairment of Ach-induced NO-dependent vasodilation in the aorta).  448 

Of note, in 8-month-old Tgαq*44 mice, a severe pattern of HF-linked erythropathy was present. 449 

This stage of HF in Tgαq*44 mice was characterised by the presence of ED, whereas cardiac function 450 

was relatively compensated compared with late-stage HF in 12-month-old Tgαq*44 mice, which was 451 

characterised by severe impairment of basal cardiac function, cardiac reserve, and exercise capacity 26. 452 

Taken together, our findings support the theory that endothelial function plays a key role in maintaining 453 

RBC haemostasis. As such, systemic ED may accelerate erythropathy. However, erythropathy has 454 

detrimental effects on endothelial function in other diseases 19. This study also provided evidence 455 

supporting such a possibility. In advanced erythropathy, RBCs taken from 12-month-old Tgαq*44 mice 456 

and co-incubated with isolated aorta rings induced impairment in endothelium-dependent relaxation in 457 

the ex vivo assay, and this effect was prevented by the inhibition of arginase. Of note, a similar 458 

experimental approach was previously used to show the contribution of diabetic erythropathy to the 459 

development of ED in diabetes 53. Interestingly, Pernow et al. discovered that the activation of arginase 460 

I in RBCs contributed to the development of ED in diabetes 19. Arginase in RBCs was also suggested to 461 

mediate endothelial dysfunction associated with pre-eclampsia54.  462 

Interestingly, in our study, ABH (an inhibitor of arginase types I and II) prevented RBC-induced 463 

impairment of endothelial function. This effect was however only detectable for the highest 464 

concentration of Ach. Pernow et. al 55 show that murine RBC expresses only arginase type I, but not 465 

arginase type II. Thus, our data suggest that impaired NO-dependent function in Tgaq*44 mice may be 466 

partially due to arginase I activity in RBC, but of course, this is just one of a number of mechanisms 467 
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that could contribute to systemic endothelial dysfunction in HF. Also, erythropathy could contribute to 468 

endothelial dysfunction by mechanisms independent on arginase 21, 22, 56-58.   469 

Taken together, there seems to be a reciprocal relationship between endothelial function and 470 

RBC hemostasis in HF as suggested previously for diabetes 19. Systemic ED accelerates erythropathy 471 

and vice versa, erythropathy may contribute to ED.  These results suggest that erythropathy may be 472 

regarded as a marker and a mediator of systemic ED in HF. Furthermore, RBC arginase and possibly 473 

other RBC-mediated mechanisms may represent novel therapeutic targets for systemic endothelial 474 

dysfunction in HF.   475 

Previous studies showed that RBCs express functional eNOS protein, which is closely 476 

correlated with FMD in humans 56, confirming a strong association between RBC functional status and 477 

endothelial function. Indeed, changes in RBC membranes could lead to increased RBC adhesion to 478 

endothelial cells 19, 57; for example, in diabetes, malaria, and hemoglobinopathies 19. Increased RBC 479 

adhesion to the endothelium may lead to impaired tissue microcirculation 21, 22. Furthermore, amylin 480 

deposited on RBCs 58 or myeloperoxidase activation on the RBC surface could also contribute to 481 

oxidative stress and impairment of NO-dependent relaxation 59. It remains to be established whether any 482 

of these RBC-mediated mechanisms also contribute to ED in HF. Moreover, previous studies of HF-483 

linked erythropathy, defined as RDW, predicted a poor prognosis in patients with clinical HF 17. 484 

Interestingly, it was suggested that HF-linked erythropathy was independent of systemic inflammation, 485 

kidney function, and numerous other studied variables, including NT-proBNP (a good biomarker of HF 486 

progression) 60, leaving the underlying mechanisms of the relationship between RDW and HF unclear 487 
17, 18. In agreement with these findings in Tgaq*44 mice, systemic inflammation, erythropoietin, and 488 

kidney failure are also unlikely mechanisms of HF-linked erythropathy because the first two were not 489 

altered in 4-, 8-, and 12-month-old Tgαq*44 mice (results not shown) and the latter was a late 490 

phenomenon, as evidenced by the fact that the plasma urea concentration increased only in 12-month-491 

old Tgaq*44 mice. 492 

 Our study has several limitations. As in previous work using this model 24, 27, only female mice 493 

were used, so we cannot be sure whether the findings of this work are also relevant to male Tgαq*44 494 

mice. To confirm the detrimental effects of RBCs on endothelial function ex vivo, the isolated aorta was 495 

used similarly as in methodology described previously 19, but we cannot be sure to what extent RBCs 496 

contribute to ED in HF in vivo since ex vivo studies are not able to fully mimic the in vivo setting. Finally, 497 

although we provided experimental evidence that RBCs in advanced erythropathy induce impaired 498 

endothelial function, and we postulated arginase in RBC to be partially involved, further experiments 499 

with more selective arginase inhibitors and tissue-specific arginase knock-out are mandatory to delineate 500 

in detail the importance of arginase in impaired NO-dependent function in Tgaq*44 mice. 501 

In conclusion, HF-linked erythropathy in Tgaq*44 mice involved progressive alterations on 502 

functional, structural, nanomechanical, and biochemical levels. The temporal relationship and 503 

correlation between the progression of HF-linked erythropathy and the progression of impairment of 504 

vascular NO-dependent function in Tgαq*44 mice suggest that erythropathy may be a marker and a 505 

mediator of vascular dysfunction in HF. To the best of our knowledge, this relationship was not 506 

demonstrated previously in the context of HF, despite a wealth of evidence that RDW has prognostic 507 

significance in HF. Surprisingly, HF represents a disease in which targeting RBCs may represent a novel 508 

treatment modality to reverse systemic endothelial dysfunction.   509 
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Figure Legends: 762 

 763 

Table 1. Body mass, blood count, lipid profile and NO metabolism in Tgαq*44 mice compared with 764 

age-matched FVB mice. Body mass (n = 9–13), Blood biochemistry (n = 7): TC (total cholesterol), 765 

HDL (high-density lipoprotein), LDL (low-density lipoprotein), TG (triglycerides), creatinine, and urea. 766 

Blood count (n = 9–13): WBC (white blood cells), PLT (platelets), RBC (red blood cells), HGB 767 

(haemoglobin), HCT (haematocrit), MCH (mean corpuscular haemoglobin), and MCHC (mean 768 

corpuscular haemoglobin concentration). NO metabolism (n = 5–13): Nitrite (NO2), Nitrate (NO3
−) 769 

concentration, and HbNO (nitrosylhaemoglobin) in 4-, 8-, 10-, and 12-month-old Tgαq*44 mice vs. age-770 

matched FVB controls mice. Normality was assessed using a Shapiro–Wilk test. Results are presented 771 

as means ± SD, *p < 0.05, **p < 0.01, ***p < 0.001 ****p < 0.0001, Tgαq*44 mice and age-matched 772 

FVB controls compared using two-way ANOVA with post hoc Sidak test or nonparametric Kruskal–773 

Wallis test (NO2
− and NO3

−).   774 

 775 

Figure 1. Peripheral vascular endothelial dysfunction (ED) with the progression of HF in Tgαq*44 776 

mice compared with age-matched FVB mice. In vivo changes in the end‐ diastolic volume of the 777 

abdominal aorta (AA) 25 minutes after acetylcholine administration (n = 4–6) (A). Changes in 778 

endothelial permeability are described as Npx50 value, after injection of gadolinium-rich liposome 779 

contrast agent (BCA-permeability (PER) (n = 5–6) (B). In vivo changes in the volume of the FA (FMD) 780 

after 5-minute vessel occlusion (n = 5–6) (C). Ex vivo: Relaxation of the aorta rings in response to 781 

increasing doses of acetylcholine (Ach) (D–G) and sodium nitroprusside (SNP) (H–K) (n = 6–8) in 4-, 782 

8-, 10-, and 12-month-old Tgαq*44 mice vs. age-matched FVB controls mice. Normality was assessed 783 

using a Shapiro–Wilk test. Results are presented as box plots (median, Q1, Q3, whiskers indicate 784 

minimum/maximum), Q1 and Q3 indicate the 25th and 75th percentiles, respectively (A–C), mean ± 785 

SEM (D–K). *p < 0.05, **p < 0.01, ***p < 0.001 ****p < 0.0001, Tgαq*44 mice and age-matched 786 

FVB controls compared using two-way ANOVA with post hoc Sidak test.  787 

 788 

Figure 2. Alterations in NO/superoxide balance, eicosanoid, and tumour necrosis factor alpha 789 

(TNFα) and Interleukin-1β (IL-1β) gene expression with the progression of HF in Tgαq*44 mice 790 

compared with age-matched FVB mice. NO production in the isolated aorta (n = 5–13) (A), O2
•- 791 

production in aortic rings (n=5–13) (B), basal production of eicosanoid (n = 5–6) 6-keto PGF1α (C), 792 

PGE2 (D), PGD2 (E), and 15-HETE (F) detected in the effluent after 45 minutes of incubation of isolated 793 

aortic rings. TNF (G) and IL- 1β (H) gene expression (n = 5–6) in the aorta in 4-, 8-, 10-, and 12-month-794 

old Tgαq*44 mice vs. FVB controls. Normality was assessed using a Shapiro–Wilk test. Results are 795 

presented as box plots (median, Q1, Q3, whiskers indicate minimum/maximum). Q1 and Q3 indicate the 796 

25th and 75th percentiles, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Tgαq*44 797 

mice compared with age-matched FVB controls using two-way ANOVA with post hoc Sidak test.  798 

 799 

Figure 3. Alteration in blood count, apoptotic RBCs, GSH/GSSG ratio (oxidative stress), and 800 

erythrocyte deformability with the progression of HF in Tgαq*44 mice compared with age-matched 801 

FVB mice. The mean corpuscular volume (MCV) (n = 11–12) (A) and red blood cell distribution width 802 

(RDW) (n = 10–12) (B) in the blood in 4-, 6-, 8-, 10- and 12-month-old Tgαq*44 mice vs FVB controls 803 

mice. The percentage of RBCs and reticulocytes (n = 9–11) (C), and the number of apoptotic RBCs (n 804 

= 9–11) (D) in the blood samples in 4- and 12-month-old Tgαq*44 mice vs. FVB mice. The glutathione 805 

redox ratio (GSSG·GSH−1) (n = 7–10) (E), RBCs deformability (n = 7–12) (F) at shear stress (20 Pa) 806 

in the RBCs in 4-, 8-, 10-, and 12-month-old Tgαq*44 mice vs. FVB controls mice. Normality was 807 

assessed using a Shapiro‐ Wilk test. Results are presented as box plots (median, Q1, Q3, whiskers 808 
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indicate minimum/maximum). Q1 and Q3 indicate the 25th and 75th percentiles, respectively. *p < 0.05, 809 

**p < 0.01, ***p < 0.001, ****p < 0.0001, Tgαq*44 mice compared with age-matched FVB controls 810 

using two-way ANOVA with post hoc Sidak test.  811 

 812 

Figure 4. Variability of RBC shape along the progression of HF in Tgαq*44 mice compared with 813 

age-matched FVB mice. Examples of RBC images taken for 4-month-old (A) and 12-month-old (B) 814 

FVB mice (control sample). Examples of RBC shape changes observed for 4-month-old (C–D), 8-month-815 

old (E–F), and 12-month-old (G–H) Tgαq*44 mice. Plots below AFM images show cross-sections along 816 

the marked lines. 817 

 818 

Figure 5. Changes in the aspect ratio and elastic moduli of RBCs with the progression of HF in 819 

Tgαq*44 mice compared with age-matched FVB mice (A–D). Effects of RBC co-incubation with the 820 

aorta on endothelium-dependent relaxation (E–H). Cell aspect ratio of RBCs (n = 5–6, 6 repeats per 821 

mouse) (A), elastic modulus of RBCs (n = 5–6, 6 repeats per mouse) (B), correlation between elasticity 822 

modulus in RBCs and ED (C), correlation between aspect ratio and elasticity modulus in RBCs (D) in 823 

4-, 6-, 8-, 10- and 12-month-old Tgαq*44 mice vs FVB controls mice. Endothelium-dependent relaxation 824 

induced by acetylcholine (ACh) (E) and endothelium-independent relaxation induced by sodium 825 

nitroprusside (SNP) (F) in the aortas isolated from 4-month-old FVB mice co-incubated with RBCs 826 

isolated from 12-month-old Tgαq*44 mice (RBCs-12-m-Tgαq*44) or 12-month-FVB mice (RBCs-12-827 

m-FVB) (n = 5–6). Effects of (2(S)-amino-6-boronohexanoic acid (ABH) on responses of Ach (G) and 828 

SNP (H) are shown from the same experimental setting (n = 5–6). Normality was assessed using a 829 

Shapiro–Wilk test.Results are presented as box plots (median, Q1, Q3, whiskers indicate 830 

minimum/maximum), Q and Q3 indicate the 25th and 75th percentiles, respectively (A–B), mean ± SEM 831 

(E–H). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Tgαq*44 mice compared with age-832 

matched FVB controls, +p < 0.05, ++p < 0.01, +++p < 0.001, Control vs RBCs-12-m-Tgαq*44, $$$p < 833 

0.001 RBCs-12-m-Tgαq*44 vs RBCs-12-m-FVB- ABH, ##p < 0.01 RBCs-12-m-Tgαq*44 vs RBCs-12-m- 834 

Tgαq*44 - ABH using two-way ANOVA with post hoc Sidak test.  835 

 836 

Figure 6. Changes of biochemical components of RBC membranes with the progression of HF in 837 

Tgαq*44 mice compared with age-matched FVB mice. The integration regions for IR bands: 838 

phospholipids (A): at 1236 cm−1 (1269–1194 cm−1), cholesterol esters (B), proteins (C): amide I (1672–839 

1608), amide II (1562–1503 cm−1), unsaturation (D)  3013 cm−1 (3001–2980 cm−1), lipid/protein ratio 840 

(E), ester/protein ratio (F). N =5 – 6 mice per experiment (total n = 32–36) for 4- and 12-month-old 841 

mice. In 8- and 10-month-old mice, one independent experiment was carried out on pooled RBCs 842 

obtained from n = 12 mice per group (5 average spectra from randomly measured points: 30 for RS 843 

and 5 for IR). Normality was assessed using a Shapiro–Wilk test. Results are presented as box plots 844 

(median, Q1, Q3, whiskers indicate minimum/maximum), Q1 and Q3 indicate the 25th and 75th 845 

percentiles, respectively (A–B), mean ± SEM (E–H). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, 846 

Tgαq*44 mice compared with age-matched FVB controls, two-way ANOVA with post hoc Sidak test. 847 

 848 

Figure 7. Schematic diagram summarizing the temporal relationship between the progression of 849 

endothelial dysfunction and erythropathy in Tgαq*44 mice, representing the murine model of chronic 850 

heart failure. At early stages of HF (4 months) a decrease in MCV (p < 0.05), biochemical alterations 851 

in RBC membranes (decreased phospholipids (p < 0.0001), and unsaturation (p < 0.001)) were present; 852 

however, these changes were not associated with functional alterations of RBCs and endothelial 853 

function was fully preserved. At the transition phase of HF, apart from a decrease in MCV (p < 0.0001), 854 

a substantial increase in RBC stiffness (p < 0.0001), and alteration in RBC shape were noted (early 855 

phase of erythropathy), as well as impaired endothelium-dependent vasodilation in the aorta and an 856 
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increase in endothelial permeability (p < 0.01) (early phase of endothelial dysfunction). At the end stage 857 

of HF, a number of RBC indices were greatly altered, including MCV (p < 0.0001), RDW (p < 0.05), 858 

RBC shape (p < 0.0001), RBC deformability (p < 0.01), and oxidative stress (increased GSH/GSSH 859 

ratio, p < 0.05) (advanced phase of erythropathy), and were associated with an advanced phase of 860 

endothelial dysfunction, characterized not only by functionally impaired endothelium-dependent 861 

vasodilation and increased endothelial permeability (p < 0.05) but also impaired NO production (p < 862 

0.05), increased superoxide anion (O2
•-) (p < 0.05), and increased eicosanoid (p < 0.05) production.  863 

 864 
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 4-m 8-m 10-m 12-m 

 FVB Tgαq*44 FVB Tgαq*44 FVB Tgαq*44 FVB Tgαq*44 

 BODY MASS 
[g] 

24.21±1.47 25.309±1.391 27.28±2.46 28.65±2.28 29.49±2.46 30.95±3.08 29.95±2.90 26.83±2.1* 

BIOCHEMICAL PARAMETERS        
TC [mmol/l] 2,680±0,271 3.019±0.366 2.41±0.29 2.84±0.66 2.97±0.28 2.6± 0.42 3.21±0.28 2.51±0.26* 
HDL [mmol/l] 1.07±0.11 1.263±0.192 0.97±0.14 1.18±0.24 1.31±0.09 1.12±0.20 1.33±0.137 1.04±0.13* 
LDL [mmol/l] 0.2±0.02 0.197±0.021 0.2±0.06 0.18±0.08 0.20±0.03 0.19±0.03 0.19±0.02 0.2±0.03 
TG [mmol/l] 2.03±0.42 2.581±0.847 3.02±0.780 2.73±1.485 2.76±0.357 2.839±0.568 2.59±0.364 2.921±1.128 
Creatinin [μmol
/] 

20.16±3.93 18.471±2.766 21.31±3.76 17.62±3.65 19.2±3.63 20.69±2.31 19.23±2.95 24.97±5.49 

Urea [mmol/l] 6.77±2.06 7.753±0.99 8.50±0.73 8.84±1.12 8.49±1.47 8.41±2.23 8.15±1.41 12.50±1.42** 

BLOOD COUNT        
WBC [K/µl] 3.61±0.659 3.291±1.075 4.02±1.254 4.02±1.701 3.24±0.821 3.59*±0.9453 2.77±0.785 3.33±1.08 

PLT [K/µl] 1209.85±102.25 
1244.273±95.2
89 

1159.08±120.
86 

1298.75±160.3 1050±174.018 
1285.92*±212.739
4 

1217.17±81.1
3 

1345.58±157.29 

RBC [M/µl] 9.59±0.413 10.081±0.448 9.811±0.246 9.851±0.330 10.420±0.812 10.26±0.675 9.18±0.66 9.66±0.60 
HGB [g/dl] 14.21±0.705 14.455±0.611 14.91±0.434 14.3±0.47 15.61±1.081 14.46±0.85 14.47±0.819 13.72±0.82 
HCT [%] 52.284±2.388 54.2±2.603 54.133±1.444 53.1±1.82 56.882±4.177 53.93±3.55 50.65±3.61 51.47±2.97 
MCHC [g/dl] 27.185±0,40 26.67±0.41 27.53±0.72 26.89±0.39* 27.42±0.41 26.59±0.23** 28.29±0.42 26.65±0.27**** 

NO METABOLIMS        
NO2

- [μM] 2.09±0.46 2.03±0.51 1.21±0.52 1.20±0.18 1.48±0.39 1.16±0.42 1.03±0.37 1.04±0.49 
NO3

- [μM] 30.71±11.23 30.63±8.85 14.70±10.09 11.22±2.91 23.66± 8.14 11.90±3.72* 23.46±3.96 10.41±3.83* 

HbNO [arb u] 602.85± 117.14 
448.06±54.994
* 

335.35±135.2 230.62±103.19 
461.629±135.
39 

362.659±123.26 
505.967±189.
09 

226.959±79.75**
* 
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