87 research outputs found

    Post-fire carbon and nitrogen accumulation and succession in Central Siberia

    Get PDF
    Improved understanding of carbon (C) accumulation after a boreal fire enables more accurate quantification of the C implications caused by potential fire regime shifts. We coupled results from a fire history study with biomass and soil sampling in a remote and little-studied region that represents a vast area of boreal taiga. We used an inventory approach based on predefined plot locations, thus avoiding problems potentially causing bias related to the standard chronosequence approach. The disadvantage of our inventory approach is that more plots are needed to expose trends. Because of this we could not expose clear trends, despite laborious sampling. We found some support for increasing C and nitrogen (N) stored in living trees and dead wood with increasing time since the previous fire or time since the previous stand-replacing fire. Surprisingly, we did not gain support for the well-established paradigm on successional patterns, beginning with angiosperms and leading, if fires are absent, to dominance of Picea. Despite the lack of clear trends in our data, we encourage fire historians and ecosystem scientists to join forces and use even larger data sets to study C accumulation since fire in the complex Eurasian boreal landscapes.Peer reviewe

    Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost

    Get PDF
    Rising air temperatures and changes in precipitation patterns in boreal ecosystems are changing the fire occurrence regimes (intervals, severity, intensity, etc.). The main impacts of fires are reported to be changes in soil physical and chemical characteristics, vegetation stress, degradation of permafrost, and increased depth of the active layer. Changes in these characteristics influence the dynamics of carbon dioxide (CO2) and methane (CH4) fluxes. We have studied the changes in CO2 and CH4 fluxes from the soil in boreal forest areas in central Siberia underlain by continuous permafrost and the possible impacts of the aforementioned environmental factors on the emissions of these greenhouse gases. We have used a fire chronosequence of areas, with the last fire occurring 1, 23, 56, and more than 100 years ago. The soils in our study acted as a source of CO2. Emissions of CO2 were lowest at the most recently burned area and increased with forest age throughout the fire chronosequence. The CO2 flux was influenced by the pH of the top 5cm of the soil, the biomass of the birch (Betula) and alder (Duschekia) trees, and by the biomass of vascular plants in the ground vegetation. Soils were found to be a CH4 sink in all our study areas. The uptake of CH4 was highest in the most recently burned area (forest fire one year ago) and the lowest in the area burned 56 years ago, but the difference between fire chronosequence areas was not significant. According to the linear mixed effect model, none of the tested factors explained the CH4 flux. The results confirm that the impact of a forest fire on CO2 flux is long-lasting in Siberian boreal forests, continuing for more than 50 years, but the impact of forest fire on CH4 flux is minimal.Peer reviewe

    Comparative study on Ecological Characteristics among Circumpolar Forest Biomes

    Get PDF
    第4回極域科学シンポジウム横断セッション:[IA] 「急変する北極気候システム及びその全球的な影響の総合的解明」―GRENE北極気候変動研究事業研究成果報告2013―11月12日(火) 国立極地研究所 2階大会議

    Continuous CO2 and CH4 Observations in the Coastal Arctic Atmosphere of the Western Taimyr Peninsula, Siberia : The First Results from a New Measurement Station in Dikson

    Get PDF
    Atmospheric observations of sources and sinks of carbon dioxide (CO2) and methane (CH4) in the pan-Arctic domain are highly sporadic, limiting our understanding of carbon turnover in this climatically sensitive environment and the fate of enormous carbon reservoirs buried in permafrost. Particular gaps apply to the Arctic latitudes of Siberia, covered by the vast tundra ecosystems underlain by permafrost, where only few atmospheric sites are available. The paper presents the first results of continuous observations of atmospheric CO2 and CH4 dry mole fractions at a newly operated station "DIAMIS" (73.506828 degrees N, 80.519869 degrees E) deployed on the edge of the Dikson settlement on the western coast of the Taimyr Peninsula. Atmospheric mole fractions of CO2, CH4, and H2O are measured by a CRDS analyzer Picarro G2301-f, which is regularly calibrated against WMO-traceable gases. Meteorological records permit screening of trace gas series. Here, we give the scientific rationale of the site, describe the instrumental setup, analyze the local environments, examine the seasonal footprint, and show CO2 and CH4 fluctuations for the daytime mixed atmospheric layer that is representative over a vast Arctic domain (-500-1000 km), capturing both terrestrial and oceanic signals.Peer reviewe

    Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia

    Get PDF
    One of the effects of climate change on boreal forest will be more frequent forest wildfires and permafrost thawing. These will increase the availability of soil organic matter (SOM) for microorganisms, change the ground vegetation composition and ultimately affect the emissions of biogenic volatile organic compounds (BVOCs), which impact atmospheric chemistry and climate. BVOC emissions from boreal forest floor have been little characterized in southern boreal region, and even less so in permafrost soil, which underlies most of the northern boreal region. Here, we report the long-term effects of wildfire on forest floor BVOC emission rates along a wildfire chronosequence in a Larix gmelinii forest in central Siberia. We determined forest floor BVOC emissions from forests exposed to wildfire 1, 23 and > 100 years ago. We studied how forest wildfires and the subsequent succession of ground vegetation, as well as changes in the availability of SOM along with the deepened and recovered active layer, influence BVOC emission rates. The forest floor acted as source of a large number of BVOCs in all forest age classes. Monoterpenes were the most abundant BVOC group in all age classes. The total BVOC emission rates measured from the 23- and >100-year-old areas were ca. 2.6 times higher than the emissions from the 1-year-old area. Lower emissions were related to a decrease in plant coverage and microbial decomposition of SOM after wildfire. Our results showed that forest wildfires play an important indirect role in regulating the amount and composition of BVOC emissions from post-fire originated boreal forest floor. This could have a substantial effect on BVOC emissions if the frequency of forest wildfires increases in the future as a result of climate warming. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe

    Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia

    Get PDF
    Climate change impacts the characteristics of the vegetation carbon-uptake process in the northern Eurasian terrestrial ecosystem. However, the currently available direct CO2 flux measurement datasets, particularly for central Siberia, are insufficient for understanding the current condition in the northern Eurasian carbon cycle. Here, we report daily and seasonal interannual variations in CO2 fluxes and associated abiotic factors measured using eddy covariance in a coniferous forest and a bog near Zotino, Krasnoyarsk Krai, Russia, for April to early June, 2013–2017. Despite the snow not being completely melted, both ecosystems became weak net CO2 sinks if the air temperature was warm enough for photosynthesis. The forest became a net CO2 sink 7–16 days earlier than the bog. After the surface soil temperature exceeded ~1 °C, the ecosystems became persistent net CO2 sinks. Net ecosystem productivity was highest in 2015 for both ecosystems because of the anomalously high air temperature in May compared with other years. Our findings demonstrate that long-term monitoring of flux measurements at the site level, particularly during winter and its transition to spring, is essential for understanding the responses of the northern Eurasian ecosystem to spring warming

    Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia

    Get PDF
    Climate change impacts the characteristics of the vegetation carbon-uptake process in the northern Eurasian terrestrial ecosystem. However, the currently available direct CO2 flux measurement datasets, particularly for central Siberia, are insufficient for understanding the current condition in the northern Eurasian carbon cycle. Here, we report daily and seasonal interannual variations in CO2 fluxes and associated abiotic factors measured using eddy covariance in a coniferous forest and a bog near Zotino, Krasnoyarsk Krai, Russia, for April to early June, 2013–2017. Despite the snow not being completely melted, both ecosystems became weak net CO2 sinks if the air temperature was warm enough for photosynthesis. The forest became a net CO2 sink 7–16 days earlier than the bog. After the surface soil temperature exceeded ~1 °C, the ecosystems became persistent net CO2 sinks. Net ecosystem productivity was highest in 2015 for both ecosystems because of the anomalously high air temperature in May compared with other years. Our findings demonstrate that long-term monitoring of flux measurements at the site level, particularly during winter and its transition to spring, is essential for understanding the responses of the northern Eurasian ecosystem to spring warming

    Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia

    Get PDF
    Aerosols produced by wildfires are a common phenomenon in boreal regions. For the Siberian taiga, it is still an open question if the effects of aerosols on atmospheric conditions increase net CO2 uptake or photosynthesis. We investigated the factors controlling forest net ecosystem productivity (NEP) and explored how clouds and smoke modulate radiation as a major factor controlling NEP during fire events in the years 2012 and 2013. To characterize the underlying mechanisms of the NEP response to environmental drivers, Artificial Neural Networks (ANNs) were trained by eddy covariance flux measurements nearby the Zotino Tall Tower Observatory (ZOTTO). Total photosynthetically active radiation, vapour pressure deficit, and diffuse fraction explain at about 54-58% of NEP variability. NEP shows a strong negative sensitivity to VPD, and a small positive to f(dlf). A strong diffuse radiation fertilization effect does not exist at ZOTTO forest due to the combined effects of low light intensity, sparse canopy and low leaf area index. Results suggests that light intensity and canopy structure are important factors of the overall diffuse radiation fertilization effect.Peer reviewe

    Permafrost regime affects the nutritional status and productivity of larches in Central Siberia

    Get PDF
    Вечная мерзлота оказывает сильное влияние на развитие лесов благодаря доступности питательных веществ. Основные вопросы этого исследования касались влияния условий площадки на концентрацию макроэлементов в массе и стабильную изотопную (13C и 15N) динамику в течение вегетационного периода, а также стехиометрию питательных веществ и эффективность резорбции в листве двух общих видов лиственницы в Сибири. Концентрация личинок, выращенных на многолетнемерзлых почвах лиственных пород (N, P и K), была чрезвычайно высокой в юных иглах по сравнению с концентрациями в зоне без вечной мерзлоты, но была в 2 раза ниже с созреванием игл. В пределах вечной мерзлоты деревья с участков с более теплым и более глубоким почвенным активным слоем имели концентрацию питательных веществ на 15-60% и более высокую 15N в их иглах по сравнению с более слабыми, более холодными почвами. Лиственница без вечной мерзлоты демонстрировала обогащение листвой в 15N (от +1,4 до +2,4 ‰) по сравнению с вечной мерзлотой (от -2,0 до -6,9 ‰). Сезонная динамика листьев d13C, как правило, снижалась с июня по август на всех участках, положительно коррелируя с массовыми концентрациями N (r = 0,69, p <0,05) и отрицательно с отношением C: N (r = -0,79, p <0,05) , При старении концентрация питательных веществ в иглах лиственницы значительно уменьшилась на 60-90%. Эта сильная способность лиственницы сохранять питательные вещества посредством резорбции является важным механизмом, который поддерживает рост деревьев в начале вегетационного периода, когда почва остается замороженной. Высокая резорбтивная эффективность, обнаруженная для K и P для лиственниц, установленных на вечной мерзлоте, указывает на ограничение питательных веществ роста деревьев в Центрально-Сибирском плато не только по N, как сообщалось ранее, но и по P и K. Наряду с увеличением биомассы (до 50 раз ), более высокие концентрации питательных веществ и обогащение листьев 15N в более теплых местах указывают на сильную реакцию производительности лиственницы на углубление активного слоя почвы
    corecore