1,948 research outputs found
Formation of Compressed Flat Electron Beams with High Transverse-Emittance Ratios
Flat beams -- beams with asymmetric transverse emittances -- have important
applications in novel light-source concepts, advanced-acceleration schemes and
could possibly alleviate the need for damping rings in lepton colliders. Over
the last decade, a flat-beam-generation technique based on the conversion of an
angular-momentum-dominated beam was proposed and experimentally tested. In this
paper we explore the production of compressed flat beams. We especially
investigate and optimize the flat-beam transformation for beams with
substantial fractional energy spread. We use as a simulation example the
photoinjector of the Fermilab's Advanced Superconducting Test Accelerator
(ASTA). The optimizations of the flat beam generation and compression at ASTA
were done via start-to-end numerical simulations for bunch charges of 3.2 nC,
1.0 nC and 20 pC at ~37 MeV. The optimized emittances of flat beams with
different bunch charges were found to be 0.25 {\mu}m (emittance ratio is ~400),
0.13 {\mu}m, 15 nm before compression, and 0.41 {\mu}m, 0.20 {\mu}m, 16 nm
after full compression, respectively with peak currents as high as 5.5 kA for a
3.2-nC flat beam. These parameters are consistent with requirements needed to
excite wakefields in asymmetric dielectric-lined waveguides or produce
significant photon flux using small-gap micro-undulators.Comment: 17
Method and Apparatus for In-Situ Health Monitoring of Solar Cells in Space
Some embodiments of the present invention describe an apparatus that includes an oscillator, a ramp generator, and an inverter. The apparatus includes an oscillator, an inverter, and a ramp generator. The oscillator is configured to generate a waveform comprising a low time and a high time. The inverter is configured to receive the waveform generated by the oscillator, and invert the waveform. The ramp generator configured to increase a gate control voltage of a transistor connected to a solar cell, and rapidly decrease the gate control voltage of the transistor. During the low time of the waveform, a measurement of a current and a voltage of the solar cell is performed as the current and voltage of the solar cell are transmitted through a first channel and to a second channel. During the high time of the waveform, a measurement of a current of a shorted cell and a voltage reference is performed as the current of the shorted cell and the voltage reference are transmitted through the first channel and the second channel
The bag and size limit review: new regulations and summary of submissions
Since the new bag and size limits were introduced in December 1991, there have been many suggestions for refinement and improvement of these regulations. This paper includes the summary of submissions to Fisheries Management Paper No 52 - Review of Bag and Size Limit Proposals for Western Australian Recreational Fishers and details new regulations which will come into force on 1 July 1995
Circuit and Method for Communication Over DC Power Line
A circuit and method for transmitting and receiving on-off-keyed (OOK) signals with fractional signal-to-noise ratios uses available high-temperature silicon- on-insulator (SOI) components to move computational, sensing, and actuation abilities closer to high-temperature or high-ionizing radiation environments such as vehicle engine compartments, deep-hole drilling environments, industrial control and monitoring of processes like smelting, and operations near nuclear reactors and in space. This device allows for the networking of multiple, like nodes to each other and to a central processor. It can do this with nothing more than the already in-situ power wiring of the system. The device s microprocessor allows it to make intelligent decisions within the vehicle operational loop and to effect control outputs to its associated actuators. The figure illustrates how each node converts digital serial data to OOK 18-kHz in transmit mode and vice-versa in receive mode; though operations at lower frequencies or up to a megahertz are within reason using this method and these parts. This innovation s technique modulates a DC power bus with millivolt-level signals through a MOSFET (metal oxide semiconductor field effect transistor) and resistor by OOK. It receives and demodulates this signal from the DC power bus through capacitive coupling at high temperature and in high ionizing radiation environments. The demodulation of the OOK signal is accomplished by using an asynchronous quadrature detection technique realized by a quasi-discrete Fourier transform through use of the quadrature components (0 and 90 phases) of the carrier frequency as generated by the microcontroller and as a function of the selected crystal frequency driving its oscillator. The detected signal is rectified using an absolute-value circuit containing no diodes (diodes being non-operational at high temperatures), and only operational amplifiers. The absolute values of the two phases of the received signal are then summed and hard limited (digitized) by comparing them to a reference level and are then input into a microprocessor as a serial bit stream. The quasi-discrete Fourier transform is performed in high-temperature components (operational amplifiers, analog switches, resistors, and capacitors). The demodulated signal is a serial data stream that is input to the UART (universal asynchronous receiver transmitter) receiver pin of the microprocessor. The OOK of the carrier frequency uses the output of the UART pin as an enabling signal that drives the gate of the MOSFET. Logic low bits enable the carrier frequency (realized by using the 0 phase signal from the microcontroller, though either phase may be used) to be DC-coupled to the power supply bus through a current-limiting resistor mounted between the MOSFET drain and the supply rail. The presence of logic lows on the power supply rail is realized by carrier bursts while logic highs are realized by the absence of bursts
Systems and Methods for Transfer Function Estimation Using Membership Functions
An apparatus, method, and computer program that can learn a linear or non-linear transfer function are disclosed. In one embodiment, for example, a computer-implemented method may include creating a plurality of combinations for at least one input, and calculating an output for the plurality of combinations. The method may also include calculating an error based on the calculated output
Fuzzy Neuron: Method and Hardware Realization
This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms
Towards automatic pulmonary nodule management in lung cancer screening with deep learning
The introduction of lung cancer screening programs will produce an
unprecedented amount of chest CT scans in the near future, which radiologists
will have to read in order to decide on a patient follow-up strategy. According
to the current guidelines, the workup of screen-detected nodules strongly
relies on nodule size and nodule type. In this paper, we present a deep
learning system based on multi-stream multi-scale convolutional networks, which
automatically classifies all nodule types relevant for nodule workup. The
system processes raw CT data containing a nodule without the need for any
additional information such as nodule segmentation or nodule size and learns a
representation of 3D data by analyzing an arbitrary number of 2D views of a
given nodule. The deep learning system was trained with data from the Italian
MILD screening trial and validated on an independent set of data from the
Danish DLCST screening trial. We analyze the advantage of processing nodules at
multiple scales with a multi-stream convolutional network architecture, and we
show that the proposed deep learning system achieves performance at classifying
nodule type that surpasses the one of classical machine learning approaches and
is within the inter-observer variability among four experienced human
observers.Comment: Published on Scientific Report
Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space
This innovation represents a method and circuit realization of a system designed to make in-situ measurements of test solar-cell operational parameters on orbit using readily available high-temperature and high-ionizing-radiation- tolerant electronic components. This innovation enables on-orbit in-situ solar-array health monitoring and is in response to a need recognized by the U.S. Air Force for future solar arrays for unmanned spacecraft. This system can also be constructed out of commercial-grade electronics and can be embedded into terrestrial solar power system as a diagnostics instrument. This innovation represents a novel approach to I-V curve measurement that is radiation and temperature hard, consumes very few system resources, is economical, and utilizes commercially available components. The circuit will also operate at temperatures as low as 55 C and up to +225 C, allowing it to reside close to the array in direct sunlight. It uses a swept mode transistor functioning as a resistive load while utilizing the solar cells themselves as the biasing device, so the size of the instrument is small and there is no danger of over-driving the cells. Further, this innovation utilizes nearly universal spacecraft bus resources and therefore can be readily adapted to any spacecraft bus allowing for ease of retrofit, or designed into new systems without requiring the addition of infrastructure. One unique characteristic of this innovation is that it effects the measurement of I-V curves without the use of large resistor arrays or active current sources normally used to characterize cells. A single transistor is used as a variable resistive load across the cell. This multi-measurement instrument was constructed using operational amplifiers, analog switches, voltage regulators, MOSFETs, resistors, and capacitors. The operational amplifiers, analog switches, and voltage regulators are silicon-on-insulator (SOI) technology known for its hardness to the effects of ionizing radiation. The SOI components used can tolerate temperatures up to 225 C, which gives plenty of thermal headroom allowing this circuit to perhaps reside in the solar cell panel itself where temperatures can reach over 100 C
Circuit for Communication over DC Power Line Using High Temperature Electronics
A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier
- …