The introduction of lung cancer screening programs will produce an
unprecedented amount of chest CT scans in the near future, which radiologists
will have to read in order to decide on a patient follow-up strategy. According
to the current guidelines, the workup of screen-detected nodules strongly
relies on nodule size and nodule type. In this paper, we present a deep
learning system based on multi-stream multi-scale convolutional networks, which
automatically classifies all nodule types relevant for nodule workup. The
system processes raw CT data containing a nodule without the need for any
additional information such as nodule segmentation or nodule size and learns a
representation of 3D data by analyzing an arbitrary number of 2D views of a
given nodule. The deep learning system was trained with data from the Italian
MILD screening trial and validated on an independent set of data from the
Danish DLCST screening trial. We analyze the advantage of processing nodules at
multiple scales with a multi-stream convolutional network architecture, and we
show that the proposed deep learning system achieves performance at classifying
nodule type that surpasses the one of classical machine learning approaches and
is within the inter-observer variability among four experienced human
observers.Comment: Published on Scientific Report