388 research outputs found
Heat flux operator, current conservation and the formal Fourier's law
By revisiting previous definitions of the heat current operator, we show that
one can define a heat current operator that satisfies the continuity equation
for a general Hamiltonian in one dimension. This expression is useful for
studying electronic, phononic and photonic energy flow in linear systems and in
hybrid structures. The definition allows us to deduce the necessary conditions
that result in current conservation for general-statistics systems. The
discrete form of the Fourier's Law of heat conduction naturally emerges in the
present definition
Application of a Dy3Co0.6Cu0.4Hx addition for controlling the microstructure and magnetic properties of sintered Nd-Fe-B magnets
The focus of new technologies on the formation of inhomogeneous distributions of heavy rare-earth metals (REMs) in hard magnetic Nd-Fe-B materials is of scientific importance to increase their functional properties, along with preserving existing sources of heavy REMs. This paper focused on the coercivity enhancement of Nd2Fe14B-based magnets by optimizing the microstructure, which includes the processes of grain boundary structuring via the application of a Dy3Co0.6Cu0.4Hx alloy added to the initial Nd-Fe-B-based powder mixtures in the course of their mechanical activation. We have studied the role of alloying elements in the formation of phase composition, microstructure, the fine structure of grains, and the hysteretic properties of hard magnetic Nd(R)(2)Fe14B-based materials. It was shown that the Dy introduction via the two-component blending process (the hydrogenated Dy3Co0.6Cu0.4 compound is added to a powder mixture) resulted in the formation of the core-shell structure of 2-14-1 phase grains. The efficient improvement of the coercivity of Nd(RE)-Fe-B magnets, with a slight sacrifice of remanence, was demonstrated.Web of Science1224art. no. 423
Theory of Second Order Optical Processes from A Luttinger Liquid
We develop a theory for the total optical secondary emission from a 1D
interacting electron system modelled as a Tomonaga-Luttinger liquid. We
separate the emission into two parts which may originate in {\em hot
luminescence} (HL) and {\em Raman Scattering} (RS) respectively when we neglect
the {\em interference} effect. We find a peak around
in the RS part which does not come from a structure factor peak. In general the
total emission cannot be separated into HL and RS. However at resonance, and
taking into account the dependence of the optical matrix element, a part of
the RS is proportional to the structure factor .Comment: 13 pages (REVTEX 3.0), CCNY-CMT-94-901, (to be published in Solid
State Communication
Introduction to Configuration Path Integral Monte Carlo
In low-temperature high-density plasmas quantum effects of the electrons are
becoming increasingly important. This requires the development of new
theoretical and computational tools. Quantum Monte Carlo methods are among the
most successful approaches to first-principle simulations of many-body quantum
systems. In this chapter we present a recently developed method---the
configuration path integral Monte Carlo (CPIMC) method for moderately coupled,
highly degenerate fermions at finite temperatures. It is based on the second
quantization representation of the -particle density operator in a basis of
(anti-)symmetrized -particle states (configurations of occupation numbers)
and allows to tread arbitrary pair interactions in a continuous space.
We give a detailed description of the method and discuss the application to
electrons or, more generally, Coulomb-interacting fermions. As a test case we
consider a few quantum particles in a one-dimensional harmonic trap. Depending
on the coupling parameter (ratio of the interaction energy to kinetic energy),
the method strongly reduces the sign problem as compared to direct path
integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy
which is of particular importance for dense matter in laser plasmas or compact
stars. In order to provide a self-contained introduction, the chapter includes
a short introduction to Metropolis Monte Carlo methods and the second
quantization of quantum mechanics.Comment: chapter in book "Introduction to Complex Plasmas: Scientific
Challenges and Technological Opportunities", Michael Bonitz, K. Becker, J.
Lopez and H. Thomsen (Eds.) Springer Series "Atomic, Optical and Plasma
Physics", vol. 82, Springer 2014, pp. 153-194 ISBN: 978-3-319-05436-0 (Print)
978-3-319-05437-7 (Online
Fermi edge singularities in X-ray spectra of strongly correlated fermions
We discuss the problem of the X-ray absorption in a system of interacting
fermions and, in particular, those features in the X-ray spectra that can be
used to discriminate between conventional Fermi-liquids and novel "strange
metals". Focusing on the case of purely forward scattering off the core-hole
potential, we account for the relevant interactions in the conduction band by
means of the bosonization technique. We find that the X-ray Fermi edge
singularities can still be present, although modified, even if the density of
states vanishes at the Fermi energy, and that, in general, the relationship
between the two appears to be quite subtle.Comment: Latex, 16 pages, Princeton preprin
Dynamics of a Quantum Particle in Asymmetric Bistable Potential with Environmental Noise
In this work we analyze the dynamics of a quantum particle subject to an asymmetric bistable potential and interacting with a thermal reservoir. We obtain the time evolution of the population distributions in both energy and position eigenstates of the particle, for different values of the coupling strength with the thermal bath. The calculation is carried out using the Feynman-
Vernon functional under the discrete variable representation
Macroscopic Quantum Phase Interference in Antiferromagnetic Particles
The tunnel splitting in biaxial antiferromagnetic particles is studied with a
magnetic field applied along the hard anisotropy axis. We observe the
oscillation of tunnel splitting as a function of the magnetic field due to the
quantum phase interference of two tunneling paths of opposite windings. The
oscillation is similar to the recent experimental result with Fe}\textrm{\
molecular clusters.}Comment: 8 pages, 2 postscript figures, to appear in J. Phys.: Condes. Matte
An alternate model for magnetization plateaus in the molecular magnet V_15
Starting from an antiferromagnetic Heisenberg Hamiltonian for the fifteen
spin-1/2 ions in V_15, we construct an effective spin Hamiltonian involving
eight low-lying states (spin-1/2 and spin-3/2) coupled to a phonon bath. We
numerically solve the time-dependent Schrodinger equation of this system, and
obtain the magnetization as a function of temperature in a time-dependent
magnetic field. The magnetization exhibits unusual patterns of hysteresis and
plateaus as the field sweep rate and temperature are varied. The observed
plateaus are not due to quantum tunneling but are a result of thermal
averaging. Our results are in good agreement with recent experimental
observations.Comment: Revtex, 4 pages, 5 eps figure
- …
