176 research outputs found

    Superfluid-Superfluid Phase Transitions in Two-Component Bose System

    Get PDF
    Depending on the Hamiltonian parameters, two-component bosons in an optical lattice can form at least three different superfluid phases in which both components participate in the superflow: a (strongly interacting) mixture of two miscible superfluids (2SF), a paired superfluid vacuum (PSF), and (at a commensurate total filling factor) the super-counter-fluid state (SCF). We study universal properties of the 2SF-PSF and 2SF-SCF quantum phase transitions and show that (i) they can be mapped onto each other, and (ii) their universality class is identical to the (d+1)-dimensional normal-superfluid transition in a single-component liquid. Finite-temperature 2SF-PSF(SCF) transitions and the topological properties of 2SF-PSF(SCF) interfaces are also discussed.Comment: 4pages, 2 figures, REVTe

    Revealing Superfluid--Mott-Insulator Transition in an Optical Lattice

    Get PDF
    We study (by an exact numerical scheme) the single-particle density matrix of ∼103\sim 10^3 ultracold atoms in an optical lattice with a parabolic confining potential. Our simulation is directly relevant to the interpretation and further development of the recent pioneering experiment by Greiner et al. In particular, we show that restructuring of the spatial distribution of the superfluid component when a domain of Mott-insulator phase appears in the system, results in a fine structure of the particle momentum distribution. This feature may be used to locate the point of the superfluid--Mott-insulator transition.Comment: 4 pages (12 figures), Latex. (A Latex macro is corrected

    Absence of a Direct Superfluid to Mott Insulator Transition in Disordered Bose Systems

    Get PDF
    We prove the absence of a direct quantum phase transition between a superfluid and a Mott insulator in a bosonic system with generic, bounded disorder. We also prove compressibility of the system on the superfluid--insulator critical line and in its neighborhood. These conclusions follow from a general {\it theorem of inclusions} which states that for any transition in a disordered system one can always find rare regions of the competing phase on either side of the transition line. Quantum Monte Carlo simulations for the disordered Bose-Hubbard model show an even stronger result, important for the nature of the Mott insulator to Bose glass phase transition: The critical disorder bound, Δc\Delta_c, corresponding to the onset of disorder-induced superfluidity, satisfies the relation Δc>Eg/2\Delta_c > E_{\rm g/2}, with Eg/2E_{\rm g/2} the half-width of the Mott gap in the pure system.Comment: 4 pages, 3 figures; replaced with resubmitted versio

    Vortex-Phonon Interaction in the Kosterlitz-Thouless Theory

    Get PDF
    The "canonical" variables of the Kosterlitz-Thouless theory--fields Φ0(r)\Phi_0({\bf r}) and ϕ(r)\phi({\bf r}), generally believed to stand for vortices and phonons (or their XY equivalents, like spin waves, etc.) turn out to be neither vortices and phonons, nor, strictly speaking, {\it canonical} variables. The latter fact explains paradoxes of (i) absence of interaction between Φ0\Phi_0 and ϕ\phi, and (ii) non-physical contribution of small vortex pairs to long-range phase correlations. We resolve the paradoxes by explicitly relating Φ0\Phi_0 and ϕ\phi to canonical vortex-pair and phonon variables.Comment: 4 pages, RevTe

    Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipole systems

    Get PDF
    The superfluid to normal fluid transition of dipolar bosons in two dimensions is studied throughout the whole density range using path integral Monte Carlo simulations and summarized in the phase diagram. While at low densities, we find good agreement with the universal results depending only on the scattering length asa_s, at moderate and high densities, the transition temperature is strongly affected by interactions and the elementary excitation spectrum. The results are expected to be of relevance to dipolar atomic and molecular systems and indirect excitons in quantum wells

    Superfluid--Insulator Transition in Commensurate One-Dimensional Bosonic System with Off-Diagonal Disorder

    Get PDF
    We study the nature of the superfluid--insulator quantum phase transition in a one-dimensional system of lattice bosons with off-diagonal disorder in the limit of large integer filling factor. Monte Carlo simulations of two strongly disordered models show that the universality class of the transition in question is the same as that of the superfluid--Mott-insulator transition in a pure system. This result can be explained by disorder self-averaging in the superfluid phase and applicability of the standard quantum hydrodynamic action. We also formulate the necessary conditions which should be satisfied by the stong-randomness universality class, if one exists.Comment: 4 pages, 4 figures. Typo in figure 4 of ver. 3 is correcte

    Continuous Time Quantum Monte Carlo method for fermions

    Get PDF
    We present numerically exact continuous-time Quantum Monte Carlo algorithm for fermions with a general non-local in space-time interaction. The new determinantal grand-canonical scheme is based on a stochastic series expansion for the partition function in the interaction representation. The method is particularly applicable for multi-band time-dependent correlations since it does not invoke the Hubbard-Stratonovich transformation. The test calculations for exactly solvable models as well results for the Green function and for the time-dependent susceptibility of the multi-band super-symmetric model with a spin-flip interaction are discussed.Comment: 10 pages, 7 Figure

    Superfluid-Insulator and Roughening Transitions in Domain Walls

    Get PDF
    We have performed quantum Monte Carlo simulations to investigate the superfluid behavior of one- and two-dimensional interfaces separating checkerboard solid domains. The system is described by the hard-core Bose-Hubbard Hamiltonian with nearest-neighbor interaction. In accordance with Ref.1, we find that (i) the interface remains superfluid in a wide range of interaction strength before it undergoes a superfluid-insulator transition; (ii) in one dimension, the transition is of the Kosterlitz-Thouless type and is accompanied by the roughening transition, driven by proliferation of charge 1/2 quasiparticles; (iii) in two dimensions, the transition belongs to the 3D U(1) universality class and the interface remains smooth. Similar phenomena are expected for domain walls in quantum antiferromagnets.Comment: 6 pages, 7 figures; references added, typo corrected in fig

    Critical temperature of interacting Bose gases in two and three dimensions

    Get PDF
    We calculate the superfluid transition temperature of homogeneous interacting Bose gases in three and two spatial dimensions using large-scale Path Integral Monte Carlo simulations (with up to N=105N=10^5 particles). In 3D we investigate the limits of the universal critical behavior in terms of the scattering length alone by using different models for the interatomic potential. We find that this type of universality sets in at small values of the gas parameter na3≲10−4na^3 \lesssim 10^{-4}. This value is different from the estimate na3≲10−6na^3 \lesssim 10^{-6} for the validity of the asymptotic expansion in the limit of vanishing na3na^3. In 2D we study the Berezinskii-Kosterlitz-Thouless transition of a gas with hard-core interactions. For this system we find good agreement with the classical lattice ∣ψ∣4|\psi|^4 model up to very large densities. We also explain the origin of the existing discrepancy between previous studies of the same problem.Comment: 4 pages, 5 figure
    • …
    corecore