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Critical temperature of interacting Bose gases in two and three dimensions.
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Dipartimento di Fisica, Università di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento, Italy

N. Prokof’ev
Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland and

Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

We calculate the superfluid transition temperature of homogeneous interacting Bose gases in
three and two spatial dimensions using large-scale Path Integral Monte Carlo simulations (with up
to N = 105 particles). In 3D we investigate the limits of the universal critical behavior in terms
of the scattering length alone by using different models for the interatomic potential. We find that
this type of universality sets in at small values of the gas parameter na3 . 10−4. This value is
different from the estimate na3 . 10−6 for the validity of the asymptotic expansion in the limit of
vanishing na3. In 2D we study the Berezinskii-Kosterlitz-Thouless transition of a gas with hard-core
interactions. For this system we find good agreement with the classical lattice |ψ|4 model up to very
large densities. We also explain the origin of the existing discrepancy between previous studies of
the same problem.

PACS numbers:

The theoretical determination of the superfluid transi-
tion temperature in homogeneous, interacting Bose sys-
tems is a fine example of a many-body problem that can
be quantitatively addressed only by “exact” numerical
techniques. This fact is well understood in the case of
strongly interacting quantum fluids, such as liquid 4He
where the critical temperature in bulk [1] as well as in
two-dimensional configurations [2, 3] was calculated us-
ing path integral Monte Carlo (PIMC) simulations, but
at first glance is surprising in the case of dilute gases.
However, in three dimensions (3D) the presence of any
finite interaction changes the universality class of the
transition from the Gaussian complex-field model, cor-
responding to the ideal gas Bose-Einstein condensation
(BEC) temperature T 0

c , to that of the XY model. Thus,
the critical temperature Tc can not be obtained from T 0

c

perturbatively [4]. In two dimensions (2D) the superfluid
transition, which belongs to the Berezinskii-Kosterlitz-
Thouless (BKT) universality class [5, 6], is induced by
interaction effects and there is no unperturbed critical
temperature to start with.

In a 3D weakly repulsive gas the critical temperature
shift is fixed by the s-wave scattering length a (a > 0),
which characterizes interatomic interactions at low tem-
perature [4, 7, 8, 9, 10, 11, 12, 13],

Tc = T 0

c

[

1 + c(an1/3)
]

. (1)

Here n is the gas density and T 0
c =

(2π~
2/mkB)[n/ζ(3/2)]2/3 with m the particle mass

and ζ(3/2) ≃ 2.612. The numerical coefficient c in
Eq. (1) was calculated in Refs. [9, 10] by solving the
effective 3D classical |ψ|4 model using lattice Monte
Carlo simulations. The reported value is c = 1.29± 0.05.
The same classical model was employed in Ref. [11] to

calculate the higher-order logarithmic correction to (1).
Continuous-space studies of a gas of hard spheres,

based on the conventional PIMC algorithm [14], were
carried out in Refs. [7, 13]. Both calculations suffered
from two shortcomings: first, the number of particles in
the simulation was only few hundreds making the extrap-
olation to the thermodynamic limit difficult; second, the
algorithm is known to be inefficient for simulations of the
superfluid density. The results of Ref. [13] for Tc agree
with the asymptotic law (1) at small densities, in con-
trast to the significantly lower values obtained in Ref. [7]
(see Fig. 1). Moreover, there is strong (about ten stan-
dard deviations!) discrepancy between Refs. [7] and [13]
at higher densities calling for further investigation of the
problem.

In 2D the BKT transition temperature of a weakly
interacting gas is written in the form [15]

TBKT =
2π~

2n2D

mkB

1

ln(ξ/4π) + ln ln(1/n2Da2

2D)
, (2)

where n2Da
2

2D is the corresponding gas parameter, and
a2D is the 2D scattering length. The numerical coefficient
ξ was calculated in Ref. [16] from lattice Monte Carlo
simulations of the classical |ψ|4 model, similarly to the
3D case, yielding the value ξ = 380 ± 3.

An important question concerns the range of applica-
bility of Eqs. (1)-(2) since they were derived for the limit
of vanishingly small interaction strength. More broadly,
one is interested in knowing up to what value of the gas
parameter it is possible to express Tc as a function of
na3 alone and ignore the dependence on the interaction
potential details. These questions are particularly rele-
vant for the 2D case where experimental determinations
of the critical temperature in trapped configurations have
become available [17, 18].

http://arXiv.org/abs/0801.3424v1
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In this Letter we report PIMC results for the superfluid
transition temperature in interacting Bose gases both in
3D and in 2D. We carry out large-scale simulations of
homogeneous systems with up to N = 105 particles. The
simulations are based on the worm algorithm, recently
extended to continous-space systems, which allows for a
reliable and efficient calculation of the superfluid den-
sity [3]. With new data the extrapolation of the critical
temperature to the thermodynamic limit can be done
with the level of accuracy that was unreachable in pre-
vious attempts. In 3D we determine the dependence of
Tc on the gas parameter na3, reporting good agreement
with the expansion (1) in the dilute regime and signif-
icant deviations from previous studies [7, 13] at higher
densities. Furthermore, we carry out simulations with
both a hard- and a soft-sphere interatomic potential to
investigate the universal behavior in terms of the scat-
tering length. In 2D we calculate TBKT for a hard-disk
gas as a function of the interaction strength, finding re-
sults in excellent agreement with the prediction (2) up to
regimes of surprisingly high density.

We consider a 3D system of N particles with peri-
odic boundary conditions described by the Hamiltonian
H = −(~2/2m)

∑N
i=1

∇2

i +
∑

i<j V (|ri − rj |), where ri

denotes the coordinates of the i-th particle. Two-body
interactions are modeled by the following potentials: the
hard-sphere (HS) potential, V HS(r) = +∞ if r < a
and zero otherwise, and the soft-sphere (SS) potential,
V SS(r) = V0 (V0 > 0) if r < R0 and zero otherwise. In
the HS case the s-wave scattering length a coincides with
the range of the potential, while in the SS case it is given
by a = R0[1 − tanh(K0R0)/K0R0] with K0 =

√
V0m/~.

We always use the range R0 = 5a and adjust V0 to ob-
tain the desired value of a. We notice that the HS and
SS model represent two extreme cases of repulsive po-
tentials: in the HS case the energy is entirely kinetic,
while for the SS case the Born approximation result
aB = (m/~2)

∫

∞

0
V (r)r2dr accounts for more than 80%

of the value of the scattering length.

In a PIMC simulation one obtains averages of physical
quantities over a set of stochastically generated configu-
rations R = (r1, ..., rN ) sampled from a probability dis-
tribution proportional to the density matrix ρ(R,R, β) =
〈R|e−βH |R〉, where β = 1/kBT is the inverse temper-
ature. The superfluid density ρs is obtained from the
winding number estimator [1], which accounts for long
permutation cycles of identical particles occurring in the
system. The calculation of ρ(R,R, β) is based on the
pair-product decomposition, where the two-body density
matrix associated with the relative motion of the pair is
determined exactly both for the HS and the SS poten-
tial [19, 20]. The critical temperature Tc is determined
from calculations of the superfluid fraction ρs/ρ (ρ = mn
is the total mass density) for systems with increasing par-
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FIG. 1: (color online). Critical temperature in 3D as a func-
tion of the gas parameter na3. The symbols labeled by PRA04
correspond to the results of Ref. [13], the ones labeled by
PRL97 correspond to Ref. [7]. The dashed line (green) is the
expansion (1) of Ref. [9] and the dotted line (black) is the
expansion of Ref. [11] including logarithmic corrections. The
solid line (red) is a guide to the eye.
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FIG. 2: (color online). Results for a 3D non-interacting gas.
Scaled superfluid fraction as a function of temperature for
different system sizes. The lines are linear fits from Eq. (3).

ticle number N using the scaling ansatz[21]

N1/3ρs(t,N)/ρ = f(tN1/3ν) = f(0) + f ′(0)tN1/3ν + ... .
(3)

Here, t = (T − Tc)/Tc is the reduced temperature, ν is
the critical exponent of the correlation length ξ(t) ∼ t−ν ,
and f(x) is a universal analytic function which allows for
a linear expansion around x = 0.

We first consider the non-interacting case (see Fig. 2).
The scaling curves all intersect at the same value of the
reduced temperature according to Eq. (3) with Tc/T

0
c =

1.0005(4) and ν = 0.96(3). The value of ν is consistent
with the prediction ν = 1 of the complex Gaussian model.
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FIG. 3: (color online). Results for a 3D hard-sphere gas with
na3 = 5 × 10−3. Scaled superfluid fraction as a function of
temperature for different system sizes. The lines are linear
fits from Eq. (3). The inset shows the N dependence of the
intersection point between lines corresponding to pairs of con-
secutive system sizes.

The corresponding results for the hard-sphere gas at the
density na3 = 5 × 10−3 are reported in Fig. 3. In this
case the intersection point between curves for consecutive
system sizes clearly drifts towards lower temperatures for
larger N (see inset of Fig. 3). This effect arises from cor-
rections to the scaling law [the right hand side of Eq. (3)
has to be multiplied by (1+CN−ω/3 + . . . ) with ω ≈ 0.8
and C of order unity]. A reliable extrapolation to the
thermodynamic limit using Eq. (3) requires large-scale
systems on order of N & 104. The temperature Tc and
the exponent ν are determined from Eq. (3) by consider-
ing series of data corresponding to systems with N suf-
ficiently large. We find Tc/T

0
c = 1.0652(4) (see Table I)

and ν = 0.70(4), in agreement with the value ν = 0.67
corresponding to the universality class of the XY model
in three dimensions [22]. By using the same procedure
we calculate Tc as a function of the gas parameter na3

both for the HS and the SS potential. The results are
shown in Fig. 1 and are reported in Table I.

Except for the largest densities, our results for the HS
gas are systematically higher than the ones of Ref. [7] and
lower compared to the ones of Ref. [13] [23]. With much
better accuracy for ρs and larger system sizes we are in
the position to explain the origin of discrepancy. It is
two-fold. First, the number of imaginary time slices used
in Ref. [13] was 15, a factor of 3 larger than in Ref. [7]. We
find, by doing simulations with up to 96 slices, that about
25 slices have to be used to ensure that the correspond-
ing systematic errors are negligible. Second, Refs. [7, 13]
underestimated error bars by a factor of ten because mul-
tiple intersections between scaling curves (i) render the
procedure of locating the intersection point ambiguous,
and (ii) prevent one from detecting corrections to scaling

TABLE I: Transition temperature Tc of a 3D hard-sphere gas
for different values of the gas parameter. The results with the
label SS correspond to a soft-sphere gas.

na3 Tc/T
0

c
na3 Tc/T

0

c

1 × 10−7 1.0069(10) 2 × 10−3 1.0624(4)

5 × 10−7 1.0091(7) (SS) 2 × 10−3 1.0277(4)

1 × 10−6 1.0127(7) 5 × 10−3 1.0652(4)

1 × 10−5 1.0214(7) 1 × 10−2 1.0627(4)

1 × 10−4 1.0351(7) (SS) 1 × 10−2 0.9880(5)

(SS) 1 × 10−4 1.0359(12) 5 × 10−2 1.0060(5)
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FIG. 4: (color online). Results for a 2D hard-disk gas with
na2 = 0.01. Superfluid density as a function of tempera-
ture for different system sizes. The solid line (red) shows
the extrapolation to the thermodynamic limit. The dashed
line (black) corresponds to the BKT universal jump. In the
inset we show the dependence of the superfluid density on
the system size for different temperatures. The dotted lines
are fits using the Kosterlitz-Thouless renormalization group
equations.

and the flow of intersection points with the system size
(which is substantial between N = 256 and N ∼ 20000).
The discrepancy with Ref. [13] reduces at very small den-
sities na3 . 10−6, where finite-size corrections to Tc ap-
pear to be less relevant and there is agreement with the
expansion (1). The critical temperature Tc first increases
with na3, then goes through a maximum and for larger
values of the gas parameter decreases below the T 0

c value.
For example, Tc/T

0
c = 0.70 in liquid 4He corresponding

to the effective gas parameter na3 ≃ 0.21 [24]. The HS
gas is finally expected to become a solid at the freezing
density na3 ≃ 0.25 [24]. Concerning the comparison be-
tween different model potentials, at na3 = 10−4 we find
very good agreement between the HS and SS gas, while
for higher densities deviations start to become evident
and the SS results are significantly smaller.
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The simulations of the 2D Bose gas are carried out
in a similar way, using a hard-core potential with range
a2D (hard-disk potential) to model the interactions. The
results for the superfluid fraction as a function of temper-
ature are reported in Fig. 4 for the value n2Da

2

2D = 0.01
of the gas parameter. The extrapolation to the thermo-
dynamic limit is carried out by fitting numerical data at
finite N to the solution of the Kosterlitz-Thouless recur-
sion relations[6]

df(N)/d lnN = −y2(N)f2(N)/2

dy(N)/d lnN = [1 − f(N)]y(N) , (4)

where f(N) = (~2πn2D/2mkBT )ρs(N)/ρ is a dimension-
less function proportional to the superfluid fraction and
y(N) is proportional to the vortex fugacity. The start-
ing values f0 and y0 of the recursion relations (4) are
determined from a best fit to the results correspond-
ing to different values of N and system temperature
in close proximity of the transition (see Fig. 4). From
these initial values one determines the critical temper-
ature TBKT in the thermodynamic limit. Here TBKT is
written in units of T ∗ = 2π~

2n2D/(2mkB), which pro-
vides the natural temperature scale for quantum degen-
eracy in 2D. In Fig. 4 we also show the prediction of
the universal jump of the superfluid fraction at the tran-
sition ρs/ρ = 2mkBTBKT/(π~

2n2D) [25], in nice agree-
ment with the temperature dependence of our extrapo-
lated curve. The results for TBKT as a function of n2Da

2

2D

are reported in Fig. 5, where they are compared with
the prediction obtained from Eq. (2). The agreement is
surprisingly good up to very large values of the gas pa-
rameter. At the highest density n2Da

2

2D = 0.1, which
is close to the freezing point n2Da

2

2D ≃ 0.32 of a gas of
hard disks [26], the dilute gas result (2) is only about 7%
larger than the PIMC value.

In conclusion, we have carried out a numerical study of
the superfluid transition temperature of interacting Bose
gases in 3D and 2D and established the limits of validity
of the asymptotic expansions (1) and (2), and the uni-
versal description in terms of the scattering length. We
have also explained and resolved the discrepancy between
previous studies.
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