19 research outputs found

    Urinary Proteomics Identifies Cathepsin D as a Biomarker of Rapid eGFR Decline in Type 1 Diabetes

    Get PDF
    Publisher Copyright: © 2022 by the American Diabetes Association.OBJECTIVE Understanding mechanisms underlying rapid estimated glomerular filtration rate (eGFR) decline is important to predict and treat kidney disease in type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS We performed a case-control study nested within four T1D cohorts to identify urinary proteins associated with rapid eGFR decline. Case and control subjects were categorized based on eGFR decline ≥3 and <1 mL/min/1.73 m2 /year, respectively. We used targeted liquid chromatography–tandem mass spectrome-try to measure 38 peptides from 20 proteins implicated in diabetic kidney dis-ease. Significant proteins were investigated in complementary human cohorts and in mouse proximal tubular epithelial cell cultures. RESULTS The cohort study included 1,270 participants followed a median 8 years. In the discovery set, only cathepsin D peptide and protein were significant on full adjustment for clinical and laboratory variables. In the validation set, associations of cathepsin D with eGFR decline were replicated in minimally adjusted models but lost significance with adjustment for albuminuria. In a meta-analysis with combination of discovery and validation sets, the odds ratio for the association of cathepsin D with rapid eGFR decline was 1.29 per SD (95% CI 1.07–1.55). In complementary human cohorts, urine cathepsin D was associated with tubulointerstitial injury and tubulointerstitial cathepsin D expression was associated with increased cortical interstitial fractional volume. In mouse proximal tubular epithelial cell cultures, advanced glycation end product–BSA increased cathepsin D activity and inflammatory and tubular injury markers, which were further increased with cathepsin D siRNA. CONCLUSIONS Urine cathepsin D is associated with rapid eGFR decline in T1D and reflects kidney tubulointerstitial injury.Peer reviewe

    A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease

    Get PDF
    Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers

    A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology.

    No full text
    Background: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these tools which often rely on the use of command line interfaces. Methods: We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. Results: By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in three murine models. Conclusions: Histo-Cloud is open source, accessible over the internet, and adaptable for segmentation of any histological structure regardless of stain. Keywords: Computational biology and bioinformatics; End-stage renal disease

    Large-scale, three-dimensional tissue cytometry of the human kidney: a complete and accessible pipeline.

    Get PDF
    The advent of personalized medicine has driven the development of novel approaches for obtaining detailed cellular and molecular information from clinical tissue samples. Tissue cytometry is a promising new technique that can be used to enumerate and characterize each cell in a tissue and, unlike flow cytometry and other single-cell techniques, does so in the context of the intact tissue, preserving spatial information that is frequently crucial to understanding a cell\u27s physiology, function, and behavior. However, the wide-scale adoption of tissue cytometry as a research tool has been limited by the fact that published examples utilize specialized techniques that are beyond the capabilities of most laboratories. Here we describe a complete and accessible pipeline, including methods of sample preparation, microscopy, image analysis, and data analysis for large-scale three-dimensional tissue cytometry of human kidney tissues. In this workflow, multiphoton microscopy of unlabeled tissue is first conducted to collect autofluorescence and second-harmonic images. The tissue is then labeled with eight fluorescent probes, and imaged using spectral confocal microscopy. The raw 16-channel images are spectrally deconvolved into 8-channel images, and analyzed using the Volumetric Tissue Exploration and Analysis (VTEA) software developed by our group. We applied this workflow to analyze millimeter-scale tissue samples obtained from human nephrectomies and from renal biopsies from individuals diagnosed with diabetic nephropathy, generating a quantitative census of tens of thousands of cells in each. Such analyses can provide useful insights that can be linked to the biology or pathology of kidney disease. The approach utilizes common laboratory techniques, is compatible with most commercially-available confocal microscope systems and all image and data analysis is conducted using the VTEA image analysis software, which is available as a plug-in for ImageJ
    corecore