378 research outputs found

    An ab initio approach to anisotropic alloying into the Si(001) surface

    Full text link
    Employing density functional theory calculations we explore initial stage of competitive alloying of co-deposited silver and indium atoms into a silicon surface. Particularly, we identify respective adsorption positions and activation barriers governing their diffusion on the dimer-reconstructed silicon surface. Further, we develop a growth model that properly describes diffusion mechanisms and silicon morphology with the account of silicon dimerization and the presence of C-type defects. Based on the surface kinetic Monte Carlo simulations we examine dynamics of bimetallic adsorption and elaborate on the temperature effects on the submonolayer growth of Ag-In alloy. A close inspection of adatom migration clearly indicates effective nucleation of Ag and In atoms, followed by the formation of orthogonal atomic chains. We show that the epitaxial bimetal growth might potentially lead to exotic ordering of adatoms in the form of anisotropic two-dimensional lattices via orthogonal oriented single-metal rows. We argue that this scenario becomes favorable provided above room temperature, while our numerical results are shown to be in agreement with experimental findings.Comment: 8 pages, 5 figure

    Distributed Environment for Efficient Virtual Machine Image Management in Federated Cloud Architectures

    Get PDF
    The use of Virtual Machines (VM) in Cloud computing provides various benefits in the overall software engineering lifecycle. These include efficient elasticity mechanisms resulting in higher resource utilization and lower operational costs. VM as software artifacts are created using provider-specific templates, called VM images (VMI), and are stored in proprietary or public repositories for further use. However, some technology specific choices can limit the interoperability among various Cloud providers and bundle the VMIs with nonessential or redundant software packages, leading to increased storage size, prolonged VMI delivery, stagnant VMI instantiation and ultimately vendor lock-in. To address these challenges, we present a set of novel functionalities and design approaches for efficient operation of distributed VMI repositories, specifically tailored for enabling: (i) simplified creation of lightweight and size optimized VMIs tuned for specific application requirements; (ii) multi-objective VMI repository optimization; and (iii) efficient reasoning mechanism to help optimizing complex VMI operations. The evaluation results confirm that the presented approaches can enable VMI size reduction by up to 55%, while trimming the image creation time by 66%. Furthermore, the repository optimization algorithms, can reduce the VMI delivery time by up to 51% and cut down the storage expenses by 3%. Moreover, by implementing replication strategies, the optimization algorithms can increase the system reliability by 74%

    Mott Transition of MnO under Pressure: Comparison of Correlated Band Theories

    Full text link
    The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation + Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo-SIC), the hybrid functional (combined local exchange plus Hartree-Fock exchange), and the local spin density SIC (SIC-LSD) method. Each method treats correlation among the five Mn 3d orbitals (per spin), including their hybridization with three O 2p2p orbitals in the valence bands and their changes with pressure. The focus is on comparison of the methods for rocksalt MnO (neglecting the observed transition to the NiAs structure in the 90-100 GPa range). Each method predicts a first-order volume collapse, but with variation in the predicted volume and critical pressure. Accompanying the volume collapse is a moment collapse, which for all methods is from high-spin to low-spin (5/2 to 1/2), not to nonmagnetic as the simplest scenario would have. The specific manner in which the transition occurs varies considerably among the methods: pseudo-SIC and SIC-LSD give insulator-to-metal, while LDA+U gives insulator-to-insulator and the hybrid method gives an insulator-to-semimetal transition. Projected densities of states above and below the transition are presented for each of the methods and used to analyze the character of each transition. In some cases the rhombohedral symmetry of the antiferromagnetically ordered phase clearly influences the character of the transition.Comment: 14 pages, 9 figures. A 7 institute collaboration, Updated versio

    Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near Infra-Red

    Full text link
    Optical resonances spanning the Near and Short Infra-Red spectral regime were exhibited experimentally by arrays of plasmonic nano-particles with concave cross-section. The concavity of the particle was shown to be the key ingredient for enabling the broad band tunability of the resonance frequency, even for particles with dimensional aspect ratios of order unity. The atypical flexibility of setting the resonance wavelength is shown to stem from a unique interplay of local geometry with surface charge distributions

    PTPT symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum

    Full text link
    Consider in L2(Rd)L^2(R^d), d1d\geq 1, the operator family H(g):=H0+igWH(g):=H_0+igW. \ds H_0= a^\ast_1a_1+... +a^\ast_da_d+d/2 is the quantum harmonic oscillator with rational frequencies, WW a PP symmetric bounded potential, and gg a real coupling constant. We show that if g<ρ|g|<\rho, ρ\rho being an explicitly determined constant, the spectrum of H(g)H(g) is real and discrete. Moreover we show that the operator \ds H(g)=a^\ast_1 a_1+a^\ast_2a_2+ig a^\ast_2a_1 has real discrete spectrum but is not diagonalizable.Comment: 20 page

    Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films

    Full text link
    We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using spatially resolved heavy ion irradiation. Structures consisting of a periodic array of strong and weak pinning channels were created with the help of metal masks. The channels formed an angle of +/-45 Deg with respect to the symmetry axis of the photolithographically patterned structures. Investigations of the anisotropic transport properties of these structures were performed. We found striking resemblance to guided vortex motion as it was observed in YBCO single crystals containing an array of unidirected twin boundaries. The use of two additional test bridges allowed to determine in parallel the resistivities of the irradiated and unirradiated parts as well as the respective current-voltage characteristics. These measurements provided the input parameters for a numerical simulation of the potential distribution of the Hall patterning. In contrast to the unidirected twin boundaries in our experiment both strong and weak pinning regions are spatially extended. The interfaces between unirradiated and irradiated regions therefore form a Bose-glass contact. The experimentally observed magnetic field dependence of the transverse voltage vanishes faster than expected from the numerical simulation and we interpret this as a hydrodynamical interaction between a Bose-glass phase and a vortex liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    Norm estimates of complex symmetric operators applied to quantum systems

    Full text link
    This paper communicates recent results in theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schr\"odinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schr\"odinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schr\"odinger operators appearing in the complex scaling theory of resonances

    Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle

    Get PDF
    Optical nanoantennas are a novel tool to investigate previously unattainable dimensions in the nanocosmos. Just like their radio-frequency equivalents, nanoantennas enhance the light-matter interaction in their feed gap. Antenna enhancement of small signals promises to open a new regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially the nonlinear spectroscopy of single nanoobjects is very demanding. Here, we present for the first time antenna-enhanced ultrafast nonlinear optical spectroscopy. In particular, we utilize the antenna to determine the nonlinear transient absorption signal of a single gold nanoparticle caused by mechanical breathing oscillations. We increase the signal amplitude by an order of magnitude which is in good agreement with our analytical and numerical models. Our method will find applications in linear and nonlinear spectroscopy of nanoobjects, ranging from single protein binding events via nonlinear tensor elements to the limits of continuum mechanics
    corecore