3,165 research outputs found

    Combustor flame flashback

    Get PDF
    Flashback, a problem that occurs in premixed-prevaporized combustors, is the upstream propagation of the flame from the combustor into the premixing tubes. Not only does flashback change the combustion process from premixed burning to diffusion burning, thus creating more pollutants, but it also inflicts considerable damage to the fuel injector, premixing tube and other equipment upstream. The conditions at which flashback occurs in steady burning and the mechanism that causes flashback in both steady and transient flow are studied. The equivalence ratio at which flashback occurs is being measured for inlet temperatures of 600-950 K, premixer wall temperatures of 450-1050 K and premixer velocities of 40-80 ft/s. These data are presented

    Convective intensification of magnetic fields in the quiet Sun

    Get PDF
    Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field B_e, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field B_p that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealised numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and is characterised by a pattern of vigorous, time-dependent, “granular” motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localised concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than B_e, and the high magnetic pressure in these flux elements leads to their being partially evacuated. Some of these flux elements contain ultra-intense magnetic fields that are significantly greater than B_p. Such fields are contained by a combination of the thermal pressure of the gas and the dynamic pressure of the convective motion, and they are constantly evolving. These ultra-intense fields develop owing to nonlinear interactions between magnetic fields and convection; they cannot be explained in terms of “convective collapse” within a thin flux tube that remains in overall pressure equilibrium with its surroundings

    Three-Phased Wake Vortex Decay

    Get PDF
    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification

    Patterns of Interactions in Complex Social Networks Based on Coloured Motifs Analysis

    Get PDF
    Coloured network motifs are small subgraphs that enable to discover and interpret the patterns of interaction within the complex networks. The analysis of three-nodes motifs where the colour of the node reflects its high – white node or low – black node centrality in the social network is presented in the paper. The importance of the vertices is assessed by utilizing two measures: degree prestige and degree centrality. The distribution of motifs in these two cases is compared to mine the interconnection patterns between nodes. The analysis is performed on the social network derived from email communication

    Generation of Magnetic Field by Combined Action of Turbulence and Shear

    Full text link
    The feasibility of a mean-field dynamo in nonhelical turbulence with superimposed linear shear is studied numerically in elongated shearing boxes. Exponential growth of magnetic field at scales much larger than the outer scale of the turbulence is found. The charateristic scale of the field is l_B ~ S^{-1/2} and growth rate is gamma ~ S, where S is the shearing rate. This newly discovered shear dynamo effect potentially represents a very generic mechanism for generating large-scale magnetic fields in a broad class of astrophysical systems with spatially coherent mean flows.Comment: 4 pages, 5 figures; replaced with revised version that matches the published PR

    Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers

    Full text link
    This paper is a detailed report on a programme of simulations used to settle a long-standing issue in the dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl number Pm<<1. The dependence of the critical Rm_c vs. the hydrodynamic Reynolds number Re is obtained for 1<Re<6700. In the limit Pm<<1, Rm_c is ~3 times larger than for Pm>1. The stability curve Rm_c(Re) (and, it is argued, the nature of the dynamo) is substantially different from the case of the simulations and liquid-metal experiments with a mean flow. It is not as yet possible to determine numerically whether the growth rate is ~Rm^{1/2} in the limit Re>>Rm>>1, as should be the case if the dynamo is driven by the inertial-range motions. The magnetic-energy spectrum in the low-Pm regime is qualitatively different from the Pm>1 case and appears to develop a negative spectral slope, although current resolutions are insufficient to determine its asymptotic form. At 1<Rm<Rm_c, the magnetic fluctuations induced via the tangling by turbulence of a weak mean field are investigated and the possibility of a k^{-1} spectrum above the resistive scale is examined. At low Rm<1, the induced fluctuations are well described by the quasistatic approximation; the k^{-11/3} spectrum is confirmed for the first time in direct numerical simulations.Comment: IoP latex, 27 pages, 25 figures, 3 tables. Accepted by New J. Physic

    The Chemical Properties of Milky Way and M31 Globular Clusters: I. A Comparative Study

    Full text link
    A comparative analysis is performed between high-quality integrated spectra of 30 globular clusters in M31, 20 Milky Way clusters, and a sample of field and cluster elliptical galaxies. We find that the Lick CN indices in the M31 and Galactic clusters are enhanced relative to the bulges of the Milky Way, M31, and elliptical spheroids. Although not seen in the Lick CN indices, the near-UV cyanogen feature (3883 A) is strongly enhanced in M31 clustesr with respect to the Galactic globulars at metallicities, --1.5<[Fe/H]<--0.3. Carbon shows signs of varying amongst these two groups. For [Fe/H]>--0.8, we observe no siginificant differences in the Hdelta, Hgamma, or Hbeta indices between the M31 and Galactic globulars. The sample of ellipticals lies offset from the loci of all the globulars in the Cyanogen--[MgFe], and Balmer--[MgFe] planes. Six of the M31 cluster spectra appear young, and are projected onto the M31 disk. Population synthesis models suggest that these are metal-rich clusters with ages 100--800 Myr, metallicities --0.20 < [Fe/H] <0.35, and masses 0.7 -7.0x10^4 Msun. Two other young clusters are Hubble V in NGC 205, and an older (~3 Gyr) cluster ~7 kpc away from the plane of the disk. The six clusters projected onto the disk rotate in a similar fashion to the HI gas in M31, and three clusters exhibit thin disk kinematics (Morrison et al.). Dynamical masses and structural parameters are required for these objects to determine whether they are massive open clusters or globular clusters. If the latter, our findings suggest globular clusters may trace the build up of galaxy disks. In either case, we conclude that these clusters are part of a young, metal-rich disk cluster system in M31, possibly as young as 1 Gyr old.Comment: 52 pages, 14 figures, 8 tables, minor revisions in response to referee, conclusions remain the same. Scheduled to appear in the October 2004 issue of The Astronomical Journa

    Vicious walkers, friendly walkers and Young tableaux II: With a wall

    Full text link
    We derive new results for the number of star and watermelon configurations of vicious walkers in the presence of an impenetrable wall by showing that these follow from standard results in the theory of Young tableaux, and combinatorial descriptions of symmetric functions. For the problem of nn-friendly walkers, we derive exact asymptotics for the number of stars and watermelons both in the absence of a wall and in the presence of a wall.Comment: 35 pages, AmS-LaTeX; Definitions of n-friendly walkers clarified; the statement of Theorem 4 and its proof were correcte

    Analysis of the shearing instability in nonlinear convection and magnetoconvection

    Get PDF
    Numerical experiments on two-dimensional convection with or without a vertical magnetic field reveal a bewildering variety of periodic and aperiodic oscillations. Steady rolls can develop a shearing instability, in which rolls turning over in one direction grow at the expense of rolls turning over in the other, resulting in a net shear across the layer. As the temperature difference across the fluid is increased, two-dimensional pulsating waves occur, in which the direction of shear alternates. We analyse the nonlinear dynamics of this behaviour by first constructing appropriate low-order sets of ordinary differential equations, which show the same behaviour, and then analysing the global bifurcations that lead to these oscillations by constructing one-dimensional return maps. We compare the behaviour of the partial differential equations, the models and the maps in systematic two-parameter studies of both the magnetic and the non-magnetic cases, emphasising how the symmetries of periodic solutions change as a result of global bifurcations. Much of the interesting behaviour is associated with a discontinuous change in the leading direction of a fixed point at a global bifurcation; this change occurs when the magnetic field is introduced
    corecore