51 research outputs found

    Feedback between p21 and reactive oxygen production is necessary for cell senescence

    Get PDF
    The sustained activation of CDKN1A (p21/Waf1/Cip1) by a DNA damage response induces mitochondrial dysfunction and reactive oxygen species (ROS) production via signalling through CDKN1A-GADD45A-MAPK14- GRB2-TGFBR2-TGFbeta in senescing primary human and mouse cells in vitro and in vivo.Enhanced ROS production in senescing cells generates additional DNA damage. Although this damage is repairable and transient, it elevates the average levels of DNA damage response permanently, thus forming a positive feedback loop.This loop is necessary and sufficient to maintain the stability of growth arrest until a ‘point of no return' is reached during establishment of senescence

    Education and training for implementation science: our interest in manuscripts describing education and training materials

    Get PDF
    Alongside the growth in interest in implementation science, there has been a marked increase in training programs, educational courses, degrees, and other offerings in implementation research and practice to meet the demand for this expertise. We believe that the science of capacity building has matured but that we can advance it further by shining light on excellent work in this area and by highlighting gaps for future research. At Implementation Science, we regularly receive manuscripts that describe or evaluate training materials, competencies, and competency development in implementation curricula. We are announcing a renewed interest in manuscripts in this area, with specifications described below

    The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples

    Get PDF
    Viruses are the most abundant biological entities on our planet. Interactions between viruses and their hosts impact several important biological processes in the world's oceans such as horizontal gene transfer, microbial diversity and biogeochemical cycling. Interrogation of microbial metagenomic sequence data collected as part of the Sorcerer II Global Ocean Expedition (GOS) revealed a high abundance of viral sequences, representing approximately 3% of the total predicted proteins. Cluster analyses of the viral sequences revealed hundreds to thousands of viral genes encoding various metabolic and cellular functions. Quantitative analyses of viral genes of host origin performed on the viral fraction of aquatic samples confirmed the viral nature of these sequences and suggested that significant portions of aquatic viral communities behave as reservoirs of such genetic material. Distributional and phylogenetic analyses of these host-derived viral sequences also suggested that viral acquisition of environmentally relevant genes of host origin is a more abundant and widespread phenomenon than previously appreciated. The predominant viral sequences identified within microbial fractions originated from tailed bacteriophages and exhibited varying global distributions according to viral family. Recruitment of GOS viral sequence fragments against 27 complete aquatic viral genomes revealed that only one reference bacteriophage genome was highly abundant and was closely related, but not identical, to the cyanomyovirus P-SSM4. The co-distribution across all sampling sites of P-SSM4-like sequences with the dominant ecotype of its host, Prochlorococcus supports the classification of the viral sequences as P-SSM4-like and suggests that this virus may influence the abundance, distribution and diversity of one of the most dominant components of picophytoplankton in oligotrophic oceans. In summary, the abundance and broad geographical distribution of viral sequences within microbial fractions, the prevalence of genes among viral sequences that encode microbial physiological function and their distinct phylogenetic distribution lend strong support to the notion that viral-mediated gene acquisition is a common and ongoing mechanism for generating microbial diversity in the marine environment

    An Experiment in Graduate Education: A Marine Science Adventure across the Indian Ocean

    Get PDF
    In the fall of 1964, Stanford University’s R/V Te Vega Cruise 5 crossed the equatorial Indian Ocean from Mombasa to Singapore, one of many ships participating in the International Indian Ocean Expedition. The cruise achieved two goals: (1) it provided hands-on oceanography training for graduate students in marine sciences, and (2) it documented the deep scattering layers of the Indian Ocean, only poorly known at the time. Taking place on the other side of the globe from the United States, the cruise also exposed students to cultural and personal experiences that shaped their lives and professions. It demonstrated the importance of experiential learning for future ocean scientists

    Mechanisms Of Co-Morbidities Associated With The Metabolic Syndrome: Insights From The JCR:La-Cp Corpulent Rat Strain

    Get PDF
    Obesity and its metabolic complications have emerged as the epidemic of the new millennia. The use of obese rodent models continues to be a productive component of efforts to understand the concomitant metabolic complications of this disease. In 1978, the JCR:LA-cp rat model was developed with an autosomal recessive corpulent (cp) trait resulting from a premature stop codon in the extracellular domain of the leptin receptor. Rats that are heterozygous for the cp trait are lean-prone, while those that are homozygous (cp/cp) spontaneously display the pathophysiology of obesity as well as a metabolic syndrome-like phenotype. Over the years, there have been formidable scientific contributions that have originated from this rat model, much of which has been reviewed extensively up to 2008. The premise of these earlier studies focused on characterizing the pathophysiology of metabolic syndrome-like phenotype that was spontaneously apparent in this model. The purpose of this review is to highlight areas of recent advancement made possible by this model including; emerging appreciation of the ‘thrifty gene’ hypothesis in the context of obesity, the concept of how chronic inflammation may drive obesogenesis, the impact of acute forms of inflammation to the brain and periphery during chronic obesity, the role of dysfunctional insulin metabolism on lipid metabolism and vascular damage, the mechanistic basis for altered vascular function as well as novel parallels between the human condition and the female JCR:LA-cp rat as a model for polycystic ovary disease (PCOS)
    corecore