747 research outputs found

    Electric discharge machine for preparation of diamond anvil cell sample chambers

    Get PDF
    We have designed and constructed a novel electric discharge machine designed primarily for the preparation of sample chambers in rhenium and stainless steel gaskets for diamond anvil cell experiments. Our design combines automatic stage movement with relatively low voltage (100 V) operation and routinely achieves a drilling/erosion speed of approximately 0.4 μms−1. The machine is used for preparing 100 μm diameter sample chambers for diamond anvil cell experiments with 250 μm culets and has also been used to prepare 50 μm diameter sample chambers for diamond anvil cell experiments with 100 μm culets to access a pressure of 165 GPa

    Observation of liquid–liquid phase transitions in ethane at 300 K

    Get PDF
    We have conducted Raman spectroscopy experiments on liquid ethane (C2H6) at 300 K, obtaining a large amount of data at very high resolution. This has enabled the observation of Raman peaks expected but not previously observed in liquid ethane and a detailed experimental study of the liquid that was not previously possible. We have observed a transition between rigid and nonrigid liquid states in liquid ethane at ca. 250 MPa corresponding to the recently proposed Frenkel line, a dynamic transition between rigid liquid (liquidlike) and nonrigid liquid (gaslike) states beginning in the subcritical region and extending to arbitrarily high pressure and temperature. The observation of this transition in liquid (subcritical) ethane allows a clear differentiation to be made between the Frenkel line (beginning in the subcritical region at higher density than the boiling line) and the Widom lines (emanating from the critical point and not existing in the subcritical region). Furthermore, we observe a narrow transition at ca. 1000 MPa to a second rigid liquid state. We propose that this corresponds to a state in which orientational order must exist to achieve the expected density and can view the transition in analogy to the transition in the solid state away from the orientationally disordered phase I to the orientationally ordered phases II and III

    Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions

    Get PDF
    We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the phase boundary of the bcc-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations are fully consistent and lead to an accurate determination of the melting curve of vanadium. These results are discussed in comparison with previous studies. The melting temperatures determined in this study are higher than those previously obtained using the speckle method, but also considerably lower than those obtained from shock-wave experiments and linear muffin-tin orbital calculations. Finally, a high-pressure high-temperature equation of state up to 120 GPa and 2800 K has also been determined

    Modeling of liquid internal energy and heat capacity over a wide pressure–temperature range from first principles

    Get PDF
    Recently, there have been significant theoretical advances in our understanding of liquids and dense supercritical fluids based on their ability to support high frequency transverse (shear) waves. Here, we have constructed a new computer model using these recent theoretical findings (the phonon theory of liquid thermodynamics) to model liquid internal energy across a wide pressure–temperature range. We have applied it to a number of real liquids in both the subcritical regime and the supercritical regime, in which the liquid state is demarcated by the Frenkel line. Our fitting to experimental data in a wide pressure–temperature range has allowed us to test the new theoretical model with hitherto unprecedented rigor. We have quantified the degree to which the prediction of internal energy and heat capacity is constrained by the different input parameters: the liquid relaxation time (initially obtained from the viscosity), the Debye wavenumber, and the infinite-frequency shear modulus. The model is successfully applied to output the internal energy and heat capacity data for several different fluids (Ar, Ne, N2, and Kr) over a range of densities and temperatures. We find that the predicted heat capacities are extremely sensitive to the values used for the liquid relaxation time. If these are calculated directly from the viscosity data, then, in some cases, changes within the margins of the experimental error in the viscosity data can cause the heat capacity to exhibit a completely different trend as a function of temperature. Our code is computationally inexpensive, and it is available for other researchers to use

    Raman spectroscopy of ethane (C 2 H 6 ) to 120 GPa at 300 K

    Get PDF
    We have conducted a Raman study of solid ethane (C2H6) at pressures up to 120 GPa at 300 K. We observe changes within the ν3 and ν11 Raman‐active vibrational modes providing evidence for several previously unobserved phase transitions at room temperature. These are located from 16 to 20 GPa, ~35 GPa, and ~60 GPa. We also could no longer measure the ν3 and ν11 modes from 75 GPa onward. We did not, however, observe any signs of the ethane molecule undergoing decomposition, up to the highest pressures measured. We also recorded spectra of the (2ν8, 2ν11), ν1, and ν10 modes but observed more limited changes in the behaviour of these modes

    Monazite-type SrCrO4 under compression

    Get PDF
    We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8–9 GPa. Evidence of a second phase transition was observed at 10–13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO4. A comparison of the high-pressure behavior of the electronic properties of SrCrO4 (SrWO4) and PbCrO4 (PbWO4) will also be made. Finally, the possible occurrence of a third structural phase transition is discussed

    Moving from information and collaboration to action: report from the 3rd International Dog Health Workshop, Paris in April 2017

    Get PDF
    Abstract Background Breed-related health problems in dogs have received increased focus over the last decade. Responsibility for causing and/or solving these problems has been variously directed towards dog breeders and kennel clubs, the veterinary profession, welfare scientists, owners, regulators, insurance companies and the media. In reality, all these stakeholders are likely to share some responsibility and optimal progress on resolving these challenges requires all key stakeholders to work together. The International Partnership for Dogs (IPFD), together with an alternating host organization, holds biennial meetings called the International Dog Health Workshops (IDHW). The Société Centrale Canine (French Kennel Club) hosted the 3rd IDHW, in Paris, in April, 2017. These meetings bring together a wide range of stakeholders in dog health, science and welfare to improve international sharing of information and resources, to provide a forum for ongoing collaboration, and to identify specific needs and actions to improve health, well-being and welfare in dogs. Results The workshop included 140 participants from 23 countries and was structured around six important issues facing those who work to improve dog health. These included individualized breed-specific strategies for health and breeding, extreme conformations, education and communication in relation to antimicrobial resistance, behavior and welfare, genetic testing and population-based evidence. A number of exciting actions were agreed during the meeting. These included setting up working groups to create tools to help breed clubs accelerate the implementation of breed-health strategies, review aspects of extreme conformation and share useful information on behavior. The meeting also heralded the development of an online resource of relevant information describing quality measures for DNA testing. A demand for more and better data and evidence was a recurring message stressed across all themes. Conclusions The meeting confirmed the benefits from inclusion of a diverse range of stakeholders who all play relevant and collaborative parts to improve future canine health. Firm actions were set for progress towards improving breed-related welfare. The next international workshop will be in the UK in 2019 and will be organized by the UK Kennel Club

    Derivation of the field due to a magnetic dipole without use of the vector potential

    Get PDF
    The mathematical form of the magnetic field due to a current loop, and the fact that it is identical to the electric field due to an electric dipole in the far field, are fundamental to our understanding of electromagnetism. While undergraduate level electromagnetism textbooks usually derive the electric field from an electric dipole, few derive the magnetic field from a current loop. Most simply state it without proof, or perform the derivation for simpler cases such as the on-axis field. Those that perform the derivation use the magnetic vector potential, a relatively advanced concept that most undergraduate students would not encounter until their final year of study, if at all. Here, a simple derivation to obtain the magnetic field due to a current loop in the far-field approximation is presented. The derivation begins from the Biot–Savart law and does not require the vector potential. The problem is set up so that only a single integration is necessary (from angle α = 0 to α = 2π around the current loop), and the result is compared with that for the electric field surrounding an electric dipole

    The FlbA-regulated predicted transcription factor Fum21 of <i>Aspergillus niger</i> is involved in fumonisin production

    Get PDF
    Aspergillus niger secretes proteins throughout the colony except for the zone that forms asexual spores called conidia. Inactivation of flbA that encodes a regulator of G-protein signaling results in colonies that are unable to reproduce asexually and that secrete proteins throughout the mycelium. In addition, the ΔflbA strain shows cell lysis and has thinner cell walls. Expression analysis showed that 38 predicted transcription factor genes are differentially expressed in strain ΔflbA. Here, the most down-regulated predicted transcription factor gene, called fum21, was inactivated. Growth, conidiation, and protein secretion were not affected in strain Δfum21. Whole genome expression analysis revealed that 63 and 11 genes were down- and up-regulated in Δfum21, respectively, when compared to the wild-type strain. Notably, 24 genes predicted to be involved in secondary metabolism were down-regulated in Δfum21, including 10 out of 12 genes of the fumonisin cluster. This was accompanied by absence of fumonisin production in the deletion strain and a 25% reduction in production of pyranonigrin A. Together, these results link FlbA-mediated sporulation-inhibited secretion with mycotoxin production

    Changes in physical health among participants in a multidisciplinary health programme for long-term unemployed persons

    Get PDF
    Background. The relationship between poor health and unemployment is well established. Health promotion among unemployed persons may improve their health. The aims of this study were to investigate characteristics of non-participants and drop-outs in a multidisciplinary health promotion programme for long-term unemployed persons with health complaints, to evaluate changes in physical health among participants, and to investigate determinants of improvement in physical health. Methods. A longitudinal, non-controlled design was used. The programme consisted of two weekly exercise sessions and one weekly cognitive session during 12 weeks. The main outcome measures were body mass index, blood pressure, cardiorespiratory fitness, abd
    corecore