6,137 research outputs found

    A comparison of stellar populations in galaxy spheroids across a wide range of Hubble types

    Get PDF
    We present line-strengths and kinematics from the central regions of 32 galaxies with Hubble types ranging from E to Sbc. Spectral indices, based on the Lick system, are measured in the optical and near-infrared (NIR). The 24 indices measured, in conjunction with models of the effects of varying abundance ratios, permit the breaking of age/metallicity degeneracy, and allow estimation of enhancements in specific light elements (particularly C and Mg). The large range of Hubble types observed allows direct comparison of line-strengths in the centres of early-type galaxies (E and S0) with those in spiral bulges, free from systematic differences that have plagued comparisons of results from different studies. Our sample includes field and Virgo cluster galaxies. For early-type galaxies our data are consistent with previously reported trends of Mg2 and Mgb with velocity dispersion. In spiral bulges we find trends in all indices with velocity dispersion. We estimate luminosity-weighted ages, metallicities and heavy-element abundance ratios (enhancements) from optical indices. These show that bulges are less enhanced in light (α-capture) elements and have lower average age than early-type galaxies. Trends involving age and metallicity also differ sharply between early and late types. An anticorrelation exists between age and metallicity in early types, while, in bulges, metallicity is correlated with velocity dispersion. We consider the implications of these findings for models of the formation of these galaxies. We find that primordial collapse models of galaxy formation are ruled out by our observations, while several predictions of hierarchical clustering (merger) models are confirmed

    Pre-enriched, not primordial ellipticals

    Full text link
    We follow the chemical evolution of a galaxy through star formation and its feedback into the inter-stellar medium, starting from primordial gas and allowing for gas to inflow into the region being modelled. We attempt to reproduce observed spectral line-strengths for early-type galaxies to constrain their star formation histories. The efficiencies and times of star formation are varied as well as the amount and duration of inflow. We evaluate the chemical enrichment and the mass of stars made with time. Single stellar population (SSP) data are then used to predict line-strengths for composite stellar populations. The results are compared with observed line-strengths in ten ellipticals, including some features which help to break the problem of age-metallicity degeneracy in old stellar populations. We find that the elliptical galaxies modelled require high metallicity SSPs (>3 x solar) at later times. In addition the strong lines observed cannot be produced by an initial starburst in primordial gas, even if a large amount of inflow is allowed for during the first few x 10E+8 years. This is because some pre-enrichment is required for lines in the bulk of the stars to approach the observed line-strengths in ellipticals.Comment: 18 pages, 8 figures, Latex, accepted for publication in MNRA

    Viewpoint : graphene is thin, but not infinitely so

    Get PDF
    Atomically thin graphene is considered a prototypical 2D material, but high-pressure experiments now reveal the 3D nature of its mechanical properties

    On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities

    Get PDF
    We demonstrate a close analogy between a viscoelastic medium and an electrically conducting fluid containing a magnetic field. Specifically, the dynamics of the Oldroyd-B fluid in the limit of large Deborah number corresponds to that of a magnetohydrodynamic (MHD) fluid in the limit of large magnetic Reynolds number. As a definite example of this analogy, we compare the stability properties of differentially rotating viscoelastic and MHD flows. We show that there is an instability of the Oldroyd-B fluid that is physically distinct from both the inertial and elastic instabilities described previously in the literature, but is directly equivalent to the magnetorotational instability in MHD. It occurs even when the specific angular momentum increases outwards, provided that the angular velocity decreases outwards; it derives from the kinetic energy of the shear flow and does not depend on the curvature of the streamlines. However, we argue that the elastic instability of viscoelastic Couette flow has no direct equivalent in MHD.Comment: 21 pages, 3 figures, to be published in J. Fluid Mec

    Random Field XY Model in Three Dimensions: The Role of Vortices

    Full text link
    We study vortex states in a 3d random-field XY model of up to one billion lattice spins. Starting with random spin orientations, the sample freezes into the vortex-glass state with a stretched-exponential decay of spin correlations, having short correlation length and a low susceptibility, compared to vortex-free states. In a field opposite to the initial magnetization, peculiar topological objects -- walls of spins still opposite to the field -- emerge along the hysteresis curve. On increasing the field strength, the walls develop cracks bounded by vortex loops. The loops then grow in size and eat the walls away. Applications to magnets and superconductors are discussed.Comment: 5 pages, 8 figure

    A self-sustaining nonlinear dynamo process in Keplerian shear flows

    Full text link
    A three-dimensional nonlinear dynamo process is identified in rotating plane Couette flow in the Keplerian regime. It is analogous to the hydrodynamic self-sustaining process in non-rotating shear flows and relies on the magneto-rotational instability of a toroidal magnetic field. Steady nonlinear solutions are computed numerically for a wide range of magnetic Reynolds numbers but are restricted to low Reynolds numbers. This process may be important to explain the sustenance of coherent fields and turbulent motions in Keplerian accretion disks, where all its basic ingredients are present.Comment: 4 pages, 7 figures, accepted for publication in Physical Review Letter
    • …
    corecore