456 research outputs found

    The nature of proximate damped Lyman alpha systems

    Full text link
    We present high resolution echelle spectra of 7 proximate damped Lyman alpha (PDLA) systems whose relative velocity separation from the background quasar is Delta V < 3000 km/s. Combining our sample with a further 9 PDLAs from the literature we compare the chemical properties of the proximate systems with a control sample of intervening DLAs. Taken at face value, the sample of 16 PDLAs exhibits a wide range of metallicities, ranging from Z ~ 1/3 Z_sun down to Z ~ 1/1000 Z_sun, including the DLA with the lowest N(SiII)/N(HI) yet reported in the literature. We find several pieces of evidence that indicate enhanced ionization and the presence of a hard ionizing spectrum in PDLAs which lead to properties that contrast with the intervening DLAs, particularly when the N(HI) is low. The abundances of Zn, Si and S in PDLAs with log N(HI) > 21, where ionization corrections are minimized, are systematically higher than the intervening population by a factor of around 3. We also find possible evidence for a higher fraction of NV absorbers amongst the PDLAs, although the statistics are still modest. 6/7 of our echelle sample show high ionization species (SiIV, CIV, OVI or NV) offset by >100 km/s from the main low ion absorption. We analyse fine-structure transitions of CII* and SiII* to constrain the PDLA distance from the QSO. Lower limits range from tens of kpc up to >160 kpc for the most stringent limit. We conclude that (at least some) PDLAs do exhibit different characteristics relative to the intervening population out to 3000 km/s (and possibly beyond). Nonetheless, the PDLAs appear distinct from lower column density associated systems and the inferred QSO-absorber separations mean they are unlikely to be associated with the QSO host. We speculate that the PDLAs preferentially sample more massive galaxies in more highly clustered regions of the high redshift universe.Comment: Accepted for publication in MNRAS. Abstract abridged

    Low-ionization Line Emission from Starburst Galaxies: A New Probe of Galactic-Scale Outflows

    Full text link
    We study the kinematically narrow, low-ionization line emission from a bright, starburst galaxy at z = 0.69 using slit spectroscopy obtained with Keck/LRIS. The spectrum reveals strong absorption in MgII and FeII resonance transitions with Doppler shifts of -200 to -300 km/s, indicating a cool gas outflow. Emission in MgII near and redward of systemic velocity, in concert with the observed absorption, yields a P Cygni-like line profile similar to those observed in the Ly alpha transition in Lyman Break Galaxies. Further, the MgII emission is spatially resolved, and extends significantly beyond the emission from stars and HII regions within the galaxy. Assuming the emission has a simple, symmetric surface brightness profile, we find that the gas extends to distances > ~7 kpc. We also detect several narrow FeII* fine-structure lines in emission near the systemic velocity, arising from energy levels which are radiatively excited directly from the ground state. We suggest that the MgII and FeII* emission is generated by photon scattering in the observed outflow, and emphasize that this emission is a generic prediction of outflows. These observations provide the first direct constraints on the minimum spatial extent and morphology of the wind from a distant galaxy. Estimates of these parameters are crucial for understanding the impact of outflows in driving galaxy evolution.Comment: Submitted to ApJL. 6 pages, 4 figures. Uses emulateapj forma

    Resolving The ISM Surrounding GRBs with Afterglow Spectroscopy

    Full text link
    We review current research related to spectroscopy of gamma-ray burst (GRB) afterglows with particular emphasis on the interstellar medium (ISM) of the galaxies hosting these high redshift events. These studies reveal the physical conditions of star-forming galaxies and yield clues to the nature of the GRB progenitor. We offer a pedagogical review of the experimental design and review current results. The majority of sightlines are characterized by large HI column densities, negligible molecular fraction, the ubiquitous detection of UV pumped fine-structure transitions, and metallicities ranging from 1/100 to nearly solar abundance.Comment: Conference procedings for Gamma Ray Bursts 2007 November 5-9, 2007 Santa Fe, New Mexico (8 pages, 4 figures

    Evidence for Ubiquitous Collimated Galactic-Scale Outflows along the Star-Forming Sequence at z~0.5

    Full text link
    We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption line profiles in individual spectra of 105 galaxies at 0.3<z<1.4. The galaxies, drawn from redshift surveys of the GOODS fields and the Extended Groth Strip, fully sample the range in star formation rates (SFRs) occupied by the star-forming sequence with stellar masses log M_*/M_sun > 9.5 at 0.3<z<0.7. Using the Doppler shifts of the MgII and FeII absorption lines as tracers of cool gas kinematics, we detect large-scale winds in 66+/-5% of the galaxies. HST/ACS imaging and our spectral analysis indicate that the outflow detection rate depends primarily on galaxy orientation: winds are detected in ~89% of galaxies having inclinations (i) <30 degrees (face-on), while the wind detection rate is only ~45% in objects having i>50 degrees (edge-on). Combined with the comparatively weak dependence of the wind detection rate on intrinsic galaxy properties, this suggests that biconical outflows are ubiquitous in normal, star-forming galaxies at z~0.5. We find that the wind velocity is correlated with host galaxy M_* at 3.4-sigma significance, while the equivalent width of the flow is correlated with host galaxy SFR at 3.5-sigma significance, suggesting that hosts with higher SFR may launch more material into outflows and/or generate a larger velocity spread for the absorbing clouds. Assuming that the gas is launched into dark matter halos with simple, isothermal density profiles, the wind velocities measured for the bulk of the cool material (~200-400 km/s) are sufficient to enable escape from the halo potentials only for the lowest-M_* systems in the sample. However, the outflows typically carry sufficient energy to reach distances of >50 kpc, and may therefore be a viable source of cool material for the massive circumgalactic medium observed around bright galaxies at z~0. [abridged]Comment: Submitted to ApJ. 61 pages, 25 figures, 4 tables, 4 appendices. Uses emulateapj forma

    A Budget and Accounting of Metals at z~0: Results from the COS-Halos Survey

    Full text link
    We present a budget and accounting of metals in and around star-forming galaxies at z∼0z\sim 0. We combine empirically derived star formation histories with updated supernova and AGB yields and rates to estimate the total mass of metals produced by galaxies with present-day stellar mass of 109.310^{9.3}--1011.6M⊙10^{11.6} M_{\odot}. On the accounting side of the ledger, we show that a surprisingly constant 20--25% mass fraction of produced metals remain in galaxies' stars, interstellar gas and interstellar dust, with little dependence of this fraction on the galaxy stellar mass (omitting those metals immediately locked up in remnants). Thus, the bulk of metals are outside of galaxies, produced in the progenitors of today's L∗L^* galaxies. The COS-Halos survey is uniquely able to measure the mass of metals in the circumgalactic medium (to impact parameters of <150< 150 kpc) of low-redshift ∼L∗\sim L^* galaxies. Using these data, we map the distribution of CGM metals as traced by both the highly ionized OVI ion and a suite of low-ionization species; combined with constraints on circumgalactic dust and hotter X-ray emitting gas out to similar impact parameters, we show that ∼40\sim 40% of metals produced by M⋆∼1010M⊙M_{\star}\sim 10^{10}M_{\odot} galaxies can be easily accounted for out to 150 kpc. With the current data, we cannot rule out a constant mass of metals within this fixed physical radius. This census provides a crucial boundary condition for the eventual fate of metals in galaxy evolution models.Comment: 19 pages, 12 figures, 2 tables. ApJ, in pres

    Deep Learning of Sea Surface Temperature Patterns to Identify Ocean Extremes

    Get PDF
    We performed an out-of-distribution (OOD) analysis of ∼12,000,000 semi-independent 128 × 128 pixel2 sea surface temperature (SST) regions, which we define as cutouts, from all nighttime granules in the MODIS R2019 Level-2 public dataset to discover the most complex or extreme phenomena at the ocean’s surface. Our algorithm (ULMO) is a probabilistic autoencoder (PAE), which combines two deep learning modules: (1) an autoencoder, trained on ∼150,000 random cutouts from 2010, to represent any input cutout with a 512-dimensional latent vector akin to a (non-linear) Empirical Orthogonal Function (EOF) analysis; and (2) a normalizing flow, which maps the autoencoder’s latent space distribution onto an isotropic Gaussian manifold. From the latter, we calculated a log-likelihood (LL) value for each cutout and defined outlier cutouts to be those in the lowest 0.1% of the distribution. These exhibit large gradients and patterns characteristic of a highly dynamic ocean surface, and many are located within larger complexes whose unique dynamics warrant future analysis. Without guidance, ULMO consistently locates the outliers where the major western boundary currents separate from the continental margin. Prompted by these results, we began the process of exploring the fundamental patterns learned by ULMO thereby identifying several compelling examples. Future work may find that algorithms such as ULMO hold significant potential/promise to learn and derive other, not-yet-identified behaviors in the ocean from the many archives of satellite-derived SST fields. We see no impediment to applying them to other large remote-sensing datasets for ocean science (e.g., SSH and ocean color)

    No evidence for feedback: Unexceptional Low-ionization winds in Host galaxies of Low Luminosity Active Galactic Nuclei at Redshift z ~1

    Full text link
    We study winds in 12 X-ray AGN host galaxies at z ~ 1. We find, using the low-ionization Fe II 2586 absorption in the stacked spectra, that the probability distribution function (PDF) of the centroid velocity shift in AGN has a median, 16th and 84th percentiles of (-87, -251, +86) km/s respectively. The PDF of the velocity dispersion in AGN has a median, 84th and 16th percentile of (139, 253, 52) km/s respectively. The centroid velocity and the velocity dispersions are obtained from a two component (ISM+wind) absorption line model. The equivalent width PDF of the outflow in AGN has median, 84th and 16th percentiles of (0.4, 0.8, 0.1) Angstrom. There is a strong ISM component in Fe II 2586 absorption with (1.2, 1.5, 0.8) Angstrom, implying presence of substantial amount cold gas in the host galaxies. For comparison, star-forming and X-ray undetected galaxies at a similar redshift, matched roughly in stellar mass and galaxy inclination, have a centroid velocity PDF with percentiles of (-74, -258, +90) km/s, and a velocity dispersion PDF percentiles of (150, 259, 57) km/s. Thus, winds in the AGN are similar to star-formation-driven winds, and are too weak to escape and expel substantial cool gas from galaxies. Our sample doubles the previous sample of AGN studied at z ~ 0.5 and extends the analysis to z ~ 1. A joint reanalysis of the z ~ 0.5 AGN sample and our sample yields consistent results to the measurements above.Comment: 24 pages, 11 figures, accepted in Ap

    GALEX Discovery of a Damped Ly-alpha System at Redshift z = 1

    Full text link
    We report the first discovery of a QSO damped Ly-alpha (DLA) system by the GALEX satellite. The system was initially identified as an MgII absorption-line system (z_abs=1.028) in the spectrum of SDSS QSO J0203-0910 (z_em=1.58). The presence of unusually strong absorption due to metal lines of ZnII, CrII, MnII, and FeII clearly suggested that it might be a DLA system with N{HI} > 2 x 10^20 atoms cm^-2. Follow-up GALEX NUV grism spectroscopy confirms the system exhibits a DLA absorption line, with a measured HI column density of N{HI} = 1.50+/-0.45 x 10^21 atoms cm^-2. By combining the GALEX N{HI} determination with the SDSS spectrum measurements of unsaturated metal-line absorption due to ZnII, which is generally not depleted onto grains, we find that the system's neutral-gas-phase metal abundance is [Zn/H] = -0.69+/-0.22, or ~20% solar. By way of comparison, although this system has one of the largest Zn^+ column densities, its metal abundances are comparable to other DLAs at z~1. Measurements of the abundances of Cr, Fe, and Mn help to further pin down the evolutionary state of the absorber.Comment: 14 pages, 3 figures, 1 table; Submitted to The Astronomical Journa
    • …
    corecore