451 research outputs found

    Cluster expansion for abstract polymer models. New bounds from an old approach

    Full text link
    We revisit the classical approach to cluster expansions, based on tree graphs, and establish a new convergence condition that improves those by Kotecky-Preiss and Dobrushin, as we show in some examples. The two ingredients of our approach are: (i) a careful consideration of the Penrose identity for truncated functions, and (ii) the use of iterated transformations to bound tree-graph expansions.Comment: 16 pages. This new version, written en reponse to the suggestions of the referees, includes more detailed introductory sections, a proof of the generalized Penrose identity and some additional results that follow from our treatmen

    Abstract polymer models with general pair interactions

    Full text link
    A convergence criterion of cluster expansion is presented in the case of an abstract polymer system with general pair interactions (i.e. not necessarily hard core or repulsive). As a concrete example, the low temperature disordered phase of the BEG model with infinite range interactions, decaying polynomially as 1/rd+λ1/r^{d+\lambda} with λ>0\lambda>0, is studied.Comment: 19 pages. Corrected statement for the stability condition (2.3) and modified section 3.1 of the proof of theorem 1 consistently with (2.3). Added a reference and modified a sentence at the end of sec. 2.

    Arthrobacter sp. Inoculation Improves Cactus Pear Growth, Quality of Fruits, and Nutraceutical Properties of Cladodes

    Get PDF
    A study was undertaken to determine the effects of a strain of Arthrobacter sp., a Plant Growth-Promoting Bacteria (PGPB), on plant phenology and qualitative composition of Opuntia ficus-indica (L.) Mill. fruits and cladodes. The strain was inoculated in soil, and its effects on cactus pear plants were detected and compared to nontreated plants. Compared to the latter, the treatment with bacteria promoted an earlier plant sprouting (2 months before the control) and fruitification, ameliorating fruit quality (i.e., improved fresh and dry weight: + 24% and + 26%, respectively, increased total solid content by 30% and polyphenols concentrations by 22%). The quality and quantity of monosaccharides of cladodes were also increased by Arthrobacter sp. with a positive effect on their nutraceutical value. In summer, the mean values of xylose, arabinose, and mannose were significantly higher in treated compared to not treated plants (+ 3.54; + 7.04; + 4.76 mg/kg d.w. respectively). A similar trend was observed in autumn, when the cladodes of inoculated plants had higher contents, i.e., 33% xylose, 65% arabinose, and 40% mannose, respect to the controls. In conclusion, Arthrobacter sp. plays a role in the improvement of nutritional and nutraceutical properties of cactus pear plants due to its capabilities to promote plant growth. Therefore, these results open new perspectives in PGPB application in the agro-farming system as alternative strategy to improve cactus pear growth, yield, and cladodes quality, being the latter the main by-product to be utilized for additional industrial uses

    On the convergence of cluster expansions for polymer gases

    Full text link
    We compare the different convergence criteria available for cluster expansions of polymer gases subjected to hard-core exclusions, with emphasis on polymers defined as finite subsets of a countable set (e.g. contour expansions and more generally high- and low-temperature expansions). In order of increasing strength, these criteria are: (i) Dobrushin criterion, obtained by a simple inductive argument; (ii) Gruber-Kunz criterion obtained through the use of Kirkwood-Salzburg equations, and (iii) a criterion obtained by two of us via a direct combinatorial handling of the terms of the expansion. We show that for subset polymers our sharper criterion can be proven both by a suitable adaptation of Dobrushin inductive argument and by an alternative --in fact, more elementary-- handling of the Kirkwood-Salzburg equations. In addition we show that for general abstract polymers this alternative treatment leads to the same convergence region as the inductive Dobrushin argument and, furthermore, to a systematic way to improve bounds on correlations

    Tumor–Stroma Cross-Talk in Human Pancreatic Ductal Adenocarcinoma : A Focus on the Effect of the Extracellular Matrix on Tumor Cell Phenotype and Invasive Potential

    Get PDF
    Abstract: The extracellular matrix (ECM) in the tumor microenvironment modulates the cancer cell phenotype, especially in pancreatic ductal adenocarcinoma (PDAC), a tumor characterized by an intense desmoplastic reaction. Because the epithelial-to-mesenchymal transition (EMT), a process that provides cancer cells with a metastatic phenotype, plays an important role in PDAC progression, the authors aimed to explore in vitro the interactions between human PDAC cells and ECM components of the PDAC microenvironment, focusing on the expression of EMT markers and matrix metalloproteinases (MMPs) that are able to digest the basement membrane during tumor invasion. EMT markers and the invasive potential of HPAF-II, HPAC, and PL45 cells grown on different ECM substrates (fibronectin, laminin, and collagen) were analyzed. While N-cadherin, \u3b1SMA, and type I collagen were not significantly affected by ECM components, the E-cadherin/\u3b2-catenin complex was highly expressed in all the experimental conditions, and E-cadherin was upregulated by collagen in PL45 cells. Cell migration was unaffected by fibronectin and delayed by laminin. In contrast, collagen significantly stimulated cell migration and the secretion of MMPs. This study\u2019s results showed that ECM components impacted cell migration and invasive potential differently. Collagen exerted a more evident effect, providing new insights into the understanding of the intricate interplay between ECM molecules and cancer cells, in order to find novel therapeutic targets for PDAC treatment

    Photochemical oxidative addition of germane and diphenylgermane to ruthenium dihydride complexes

    Get PDF
    Photochemical reactions of germane and diphenylgermane with Ru(PP) 2 H 2 (PP = R 2 PCH 2 CH 2 PR 2 or DuPhos, R = Ph dppe, R = Et depe, R = Me dmpe) are reported. Reaction with GeH 4 generates a mixture of cis and trans isomers of Ru(PP) 2 (GeH 3 )H except for the DuPhos complex which yields the product only in the cis form. In situ laser photolysis (355 nm) demonstrates that the initial product is the cis isomer that undergoes thermal isomerization to the trans isomer. The complex cis-[Ru(dppe) 2 (GeH 3 )H] crystallizes selectively, allowing determination of its X-ray structure as a germyl hydride with a long Ru-H···Ge separation of 2.64(3) Å indicating that no residual interaction between the RuH and Ge is present. DFT calculations are also consistent with full oxidative addition. The structure of cis-[Ru(DuPhos) 2 (GeH 3 )H] reveals significant distortion from an octahedral geometry. The major species in the crystal (95%) exhibits a structure with a Ru-H···Ge distance of 2.42(5) Å suggesting negligible interaction between these centers. DFT calculations of the structure are consistent with the experimental determination. The reactions of Ru(PP) 2 H 2 with diphenylgermane yield cis-[Ru(PP) 2 (GePh 2 H)H] exclusively for PP = dmpe and depe, while the cis isomer is dominant in the case of dppe. A photochemical competition reaction between Ru(dppe) 2 (H) 2 and the two substrates Ph 2 SiH 2 and Ph 2 GeH 2 results in both Si-H and Ge-H oxidative addition activation with a kinetic preference (0.18:1) for the germyl hydride product. Thermal conversion of Ru(dppe) 2 (SiPh 2 H)H to Ru(dppe) 2 (GePh 2 H)H is observed on heating

    Photochemical pump and NMR probe : Chemically created NMR coherence on a microsecond time scale

    Get PDF
    We report pump-probe experiments employing laser-synchronized reactions of para-hydrogen (para-H2) with transition metal dihydride complexes in conjunction with nuclear magnetic resonance (NMR) detection. The pump-probe experiment consists of a single nanosecond laser pump pulse followed, after a precisely defined delay, by a single radio frequency (rf) probe pulse. Laser irradiation eliminates H2 from either Ru(PPh3) 3(CO)(H)2 1 or cis-Ru(dppe)2(H)2 2 in C6D6 solution. Reaction with para-H2 then regenerates 1 and 2 in a well-defined nuclear spin state. The rf probe pulse produces a high-resolution, single-scan 1H NMR spectrum that can be recorded after a pump-probe delay of just 10 μs. The evolution of the spectra can be followed as the pump-probe delay is increased by micro- or millisecond increments. Due to the sensitivity of this para-H2 experiment, the resulting NMR spectra can have hydride signal-to-noise ratios exceeding 750:1. The spectra of 1 oscillate in amplitude with frequency 1101 ± 3 Hz, the chemical shift difference between the chemically inequivalent hydrides. The corresponding hydride signals of 2 oscillate with frequency 83 ± 5 Hz, which matches the difference between couplings of the hydrides to the equatorial 31P nuclei. We use the product operator formalism to show that this oscillatory behavior arises from a magnetic coherence in the plane orthogonal to the magnetic field that is generated by use of the laser pulse without rf initialization. In addition, we demonstrate how chemical shift imaging can differentiate the region of laser irradiation thereby distinguishing between thermal and photochemical reactivity within the NMR tube

    Acid Sphingomyelinase Downregulation Enhances Mitochondrial Fusion and Promotes Oxidative Metabolism in a Mouse Model of Melanoma

    Get PDF
    Melanoma is the most severe type of skin cancer. Its unique and heterogeneous metabolism, relying on both glycolysis and oxidative phosphorylation, allows it to adapt to disparate conditions. Mitochondrial function is strictly interconnected with mitochondrial dynamics and both are fundamental in tumour progression and metastasis. The malignant phenotype of melanoma is also regulated by the expression levels of the enzyme acid sphingomyelinase (A-SMase). By modulating at transcriptional level A-SMase in the melanoma cell line B16-F1 cells, we assessed the effect of enzyme downregulation on mitochondrial dynamics and function. Our results demonstrate that A-SMase influences mitochondrial morphology by affecting the expression of mitofusin 1 and OPA1. The enhanced expression of the two mitochondrial fusion proteins, observed when A-SMase is expressed at low levels, correlates with the increase of mitochondrial function via the stimulation of the genes PGC-1alpha and TFAM, two genes that preside over mitochondrial biogenesis. Thus, the reduction of A-SMase expression, observed in malignant melanomas, may determine their metastatic behaviour through the stimulation of mitochondrial fusion, activity and biogenesis, conferring a metabolic advantage to melanoma cells
    • …
    corecore