19,495 research outputs found

    Heavy metals partioning in three French forest soils by sequential extraction procedure

    Get PDF
    To know the concentration of heavy metal associated to chemical compounds is important to evaluate the environmental risks on soils, particularly regarding ion bioavailability. The relative mobility and strength of binding of heavy metals to the soil components can be studied using a sequential extraction procedure which provides a meaningful comparison between different soil profiles. The heavy metals partitioning bas been identified in three different french forest soils : one cambic podzol, one calcaric cambisol and one mollic andosol, using a new sequential extraction method. Results show that metal fractionation is metal and site specific. The water leaching phase does not contain any metals. The proportion of heavy metal leached in the exchangeable and the acid — soplhuabslee is significant for Cd. The residual phase is important for Cr, Pb, and to a lesser extend for Ni. The organic matter fraction is dominant for Zn and Cu. Thus, the considered heavy metals are mainly bounded to iron oxides, to the organic matter and to the mineral residue. The order of heavy metals availability in the three soils would be : Zn>Cd>Cu>Pb>NiL&egatd;C r.i sotopes in some extracts of the extraction procedure corroborate the anthropogenic inputs for two soils. These both infomations allow to trace the origin, the mobility and the distribution of Pb in the soil

    Significance of floods in metal dynamics and export in a small agricultural catchment

    Get PDF
    High-resolution monitoring of water discharge and water sampling were performed between early October 2006 and late September 2007 in the Montoussé River, a permanent stream draining an experimental agricultural catchment in Gascogne region (SW France). Dissolved and particulate concentrations of major elements and trace metals (i.e. Al, Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, Sc and Zn) were examined. Our results showed that contamination levels were deficient to moderate, as a result of sustainable agricultural practices. Regarding dynamics, metal partitioning between particulate and dissolved phases was altered during flood conditions: the particulate phase was diluted by coarser and less contaminated particles from river bottom and banks, whereas the liquid phase was rapidly enriched owing to desorption mechanisms. Soluble/reactive elements were washed-off from soils at the beginning of the rain episode. The contribution of the flood event of May 2007 (by far the most significant episode over the study period) to the annual metal export was considerable for particulate forms (72–82%) and moderate for dissolved elements (0–20%). The hydrological functioning of the Montoussé stream poses dual threat on ecosystems, the consequences of which differ from both temporal and spatial scales: (i) desorption processes at the beginning of floods induce locally a rapid enrichment (up to 3.4-fold the pre-flood signatures on average for the event of May 2007) of waters in bioavailable metals, and (ii) labile metals – enriched by anthropogenic sources – associated to particles (mainly via carbonates and Fe/Mn oxides), were predominantly transferred during floods into downstream-connected rivers

    Dissolved organic matter contribution to rain water, throughfall and soil solution chemistry

    Get PDF
    A method is proposed to determine the acidbase properties of natural water samples containing relatively high amounts of dissolved organic matter. The electroneutrality principle as well as titration data are used to estimate the organic anion concentration in open field precipitation, throughfall and soil solutions, and to develop empirical models based on pH and dissolved organic carbon content. The organic acids dissolved in throughfall have a similar acidic site density but are weaker than those dissolved in soil solution, stream and lake waters. This method is usefull to determine the contribution of organic anions to the charge balance and to the buffering capacity of dissolved organic rich waters with low acid neutralizing capacity. It can be used also to determine the respective contribution of natural organics and anthropogenic minerals to the total acidity of throughfall and rain waters

    Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales

    Get PDF
    The goal of this study was to highlight the occurrence of an additional proton-promoted weathering pathway of carbonate rocks in agricultural areas where N-fertilizers are extensively spread, and to estimate its consequences on riverine alkalinity and uptake of CO2 by weathering. We surveyed 25 small streams in the calcareous molassic Gascogne area located in the Garonne river basin (south-western France) that drain cultivated or forested catchments for their major element compositions during different hydrologic periods. Among these catchments, the Hay and the Montousse´, two experimental catchments, were monitored on a weekly basis. Studies in the literature from other small carbonate catchments in Europe were dissected in the same way. In areas of intensive agriculture, the molar ratio (Ca + Mg)/HCO3 in surface waters is significantly higher (0.7 on average) than in areas of low anthropogenic pressure (0.5). This corresponds to a decrease in riverine alkalinity, which can reach 80% during storm events. This relative loss of alkalinity correlates well with the NO3 content in surface waters. In cultivated areas, the contribution of atmospheric/soil CO2 to the total riverine alkalinity (CO2 ATM-SOIL/HCO3) is less than 50% (expected value for carbonate basins), and it decreases when the nitrate concentration increases. This loss of alkalinity can be attributed to the substitution of carbonic acid (natural weathering pathway) by protons produced by nitrification of Nfertilizers (anthropogenic weathering pathway) occurring in soils during carbonate dissolution. As a consequence of these processes, the alkalinity over the last 30 years shows a decreasing trend in the Save river (one of the main Garonne river tributaries, draining an agricultural catchment), while the nitrate and calcium plus magnesium contents are increasing. We estimated that the contribution of atmospheric/soil CO2 to riverine alkalinity decreased by about 7–17% on average for all the studied catchments. Using these values, the deficit of CO2 uptake can be estimated as up to 0.22–0.53 and 12–29 Tg1 yr1 CO2 on a country scale (France) and a global scale, respectively. These losses represent up to 5.7–13.4% and only 1.6–3.8% of the total CO2 flux naturally consumed by carbonate dissolution, for France and on a global scale, respectively. Nevertheless, this loss of alkalinity relative to the Ca + Mg content relates to carbonate weathering by protons from N-fertilizers nitrification, which is a net source of CO2 for the atmosphere. This anthropogenic CO2 source is not negligible since it could reach 6–15% of CO2 uptake by natural silicate weathering and could consequently partly counterbalance this natural CO2 sink

    Soil heavy metal contamination and acid deposition: experimental approach on two forest soils in Hunan, Southern China

    Get PDF
    In 1985, a tailing dam collapsed in Hunan province (southern China) leading to soil contamination by heavy metals from the tailings waste. Moreover, acid deposition becomes more and more serious in this area. In this context, two forest soils (a red soil and a yellow red soil, typically and commonly found in southern China) were collected from Hunan. The objectives are (i) to determine releases and changes in speciation fractions of heavy metals (especially Cd, Cu, and Zn) when the soils are contaminated with heavy metals and affected by simulated acid deposition, and (ii) to study effects of soil heavy metals and acid deposition on releases of soil Ca2+, Mg2+, and Al3+. The soil samples were soaked in the solutions of CdCl2, CuCl2, and ZnCl2 for 15 days to make contaminated soils containing 200 mg kg1 of Cd, Cu, and Zn. Then the contaminated soils and the original soils were extracted with five simulated acid deposition solutions (pH ranged from 5.6 to 3.0 and total dissolved salts increased). The experimental results indicate that acid deposition leads to great releases of soil heavy metals due to complicated soil chemical processes, mostly cation exchange and partly dissolution of minerals at pH lower than 4.2. These released heavy metals come mainly from soil exchangeable pools and other labile fractions. Releases of heavy metals are closely controlled by pH values or, in some cases, total cation contents in acid deposition; meanwhile, concentrations of heavy metals are negatively related to the relevant pH values in soil equilibrium solutions when pH values are in a range of 4.2–5.1. From the point of view of heavy metal releases, Zn is the most sensitive to acid deposition, followed by Cd and Cu. Compared with the original soils, the contaminated soils could probably release more base cations Ca2+ and Mg2+ and less Al3+. Greater amounts of Cd, Cu, Zn, and Al released from Soil B show that this soil is more sensitive to acid deposition, and we could expect serious environmental contamination in Soil B area if mining activities and acid deposition are not under control in the future

    Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): Where do they come from?

    Get PDF
    The Gascogne region (SW of France) is cultivated for more than 75% of the area. 83 samples of stream bed sediments were collected in three main Gascogne river basins (Gers, Save and Touch, left tributaries of the Garonne river) to evaluate the impact of agricultural practices on trace elements behavior. Eight potential harmful elements (PHE) (Cr, Co, Ni, Cu, Zn, As, Cd and Pb), four reference elements for normalization (Sc, Cs, Al and Fe) and four major elements (Mn, Ca, Mg and P) were considered. The average trace element concentrations in the fine fractions (b63 μm) are in the decreasing order: ZnNCrNNiNPbNCuNCoNAsNScNCsNCd. Geochemical investigations and an original approach combining regression analysis and chemical sequential extraction allowed to select the most adequate reference material (regional molasse)and reference element (Cs) for normalization procedure. The enrichment factor (EF) is generally lower than 2.5, particularly for Cr, Ni, Cu, As, Zn; however, 23% of the sampling stations are more contaminated (2.5bEFb4.5), particularly for Cd, Pb and Co. The PHE in the Gascogne river sediments are mainly originated from natural weathering processes; nevertheless, anthropogenic contribution could represent up to 34% of the total sediment content. For lead, geochemical and isotopic methods gave very similar anthropogenic contributions (24% and 22%, respectively). The enrichment of Cu, Pb, Zn, Co, As, Ni, Cr was mainly related to global and local atmospheric deposition of industrial emissions and gasoline combustion, and was associated to forested catchments. All PHE's are controlled by clay and oxi-hydroxides minerals. Cdwas the only PHE enriched downstreamcultivated catchments and this enrichmentwas linked to Ca and P. This indicates a major origin of Cd fromfertilizer inputs and a main control by carbonate mineral

    Distribution and origin of lead in stream sediments from small agricultural catchments draining Miocene molassic deposits (SW France)

    Get PDF
    Total Pb concentrations and isotopic composition were determined in stream-bed sediments and bedrock from 29 small agricultural or forested catchments in the Gascogne area (SW France). The contribution of Pb from various natural and anthropogenic sources was investigated in this rural area which is very weakly impacted by industrial or urban emissions. Environmental parameters in catchments (importance of forest cover, organic matter and oxide content in sediments) were considered. A combination of geochemical (enrichment calculation, sequential extraction) and isotopic investigations was performed to constrain the origin of Pb and the distribution of anthropogenic Pb in sediments. Most of the sediments have low total Pb content compared to other agricultural regions more impacted by industrial or urban emissions. The results indicated a moderate but significant Pb enrichment, particularly for catchments draining forested areas. This enrichment was positively related to organic C content in sediment and catchment forest cover, whereas in entirely cultivated catchments it was related to Fe-oxide content. An average anthropogenic end-member was determined using Pb isotopes, and was supposed to be representative of background atmospheric Pb pollution, with a weak influence of Pb from recent gasoline and local fertiliser spreading. The amount of anthropogenic Pb (Pbanthr) in sediments estimated using a geochemical approach (mean 63.7 ± 20.4%) was higher than that estimated using an isotopic approach (mean 36.6 ± 17.8%), but the same trend was observed among the samples, except for low anthropogenic contributions. The distribution of Pbanthr in sediments from weakly forested catchments indicated a strong affinity for carbonates and Fe-oxides. Amorphous Fe-oxides became preferential trapping compounds as soon as Pb enrichment increased and carbonate content decreased. Finally, in cultivated catchments, organic C was not a main trapping component for Pbanthr in sediments

    Of potatoes and Ascension

    Get PDF

    Observations on Twinning in Zone-refined Tungsten

    Get PDF
    Observations on twinning in zone-refined tungste
    corecore