366 research outputs found

    Quantitative LEED I-V and ab initio study of the Si(111)-3x2-Sm surface structure and the missing half order spots in the 3x1 diffraction pattern

    Full text link
    We have used Low Energy Electron Diffraction (LEED) I-V analysis and ab initio calculations to quantitatively determine the honeycomb chain model structure for the Si(111)-3x2-Sm surface. This structure and a similar 3x1 recontruction have been observed for many Alkali-Earth and Rare-Earth metals on the Si(111) surface. Our ab initio calculations show that there are two almost degenerate sites for the Sm atom in the unit cell and the LEED I-V analysis reveals that an admixture of the two in a ratio that slightly favours the site with the lower energy is the best match to experiment. We show that the I-V curves are insensitive to the presence of the Sm atom and that this results in a very low intensity for the half order spots which might explain the appearance of a 3x1 LEED pattern produced by all of the structures with a 3x2 unit cell.Comment: 10 pages, 13 figures. Preliminary work presented at the the APS March meeting, Baltimore MD, 2006. To be published in Phys. Rev. B. April/May 200

    Improved real-space genetic algorithm for crystal structure and polymorph prediction

    Get PDF
    Existing genetic algorithms for crystal structure and polymorph prediction can suffer from stagnation during evolution, with a consequent loss of efficiency and accuracy. An improved genetic algorithm is introduced herein which penalizes similar structures and so enhances structural diversity in the population at each generation. This is shown to improve the quality of results found for the theoretical prediction of simple model crystal structures. In particular, this method is demonstrated to find three new zero-temperature phases of the Dzugutov potential that have not been previously reported

    STM and ab initio study of holmium nanowires on a Ge(111) Surface

    Full text link
    A nanorod structure has been observed on the Ho/Ge(111) surface using scanning tunneling microscopy (STM). The rods do not require patterning of the surface or defects such as step edges in order to grow as is the case for nanorods on Si(111). At low holmium coverage the nanorods exist as isolated nanostructures while at high coverage they form a periodic 5x1 structure. We propose a structural model for the 5x1 unit cell and show using an ab initio calculation that the STM profile of our model structure compares favorably to that obtained experimentally for both filled and empty states sampling. The calculated local density of states shows that the nanorod is metallic in character.Comment: 4 pages, 12 figures (inc. subfigures). Presented at the the APS March meeting, Baltimore MD, 200

    Atomistic Molecular Dynamics Simulations of Shock Compressed Quartz

    Get PDF
    Atomistic non-equilibrium molecular dynamics (NEMD) simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer and van Santen to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geom- etry optimised system of a polar slab in a 3-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under representative pressure conditions of the Earth core, but unsuitable for high-pressure shock wave simulations. We also find that the BKS potential incorrectly prefers the {\beta}-quartz phase over the {\alpha}-quartz phase at zero-temperature, and that there is a {\beta} \rightarrow {\alpha} phase-transition at 6 GPa.Comment: 19 pages, 13 figures, Accepted for publication in Journal of Chemical Physic

    Simulation of growth and development of diverse legume species in APSIM

    Get PDF
    This paper describes the physiological basis and validation of a generic legume model as it applies to 4 species: chickpea (Cicer arietinum L.), mungbean (Vigna radiata (L.) Wilczek), peanut (Arachis hypogaeaL.), and lucerne (Medicago sativa L.). For each species, the key physiological parameters were derived from the literature and our own experimentation. The model was tested on an independent set of experiments, predominantly from the tropics and subtropics of Australia, varying in cultivar, sowing date, water regime (irrigated or dryland), row spacing, and plant population density. The model is an attempt to simulate crop growth and development with satisfactory comprehensiveness, without the necessity of defining a large number of parameters. A generic approach was adopted in recognition of the common underlying physiology and simulation approaches for many legume species. Simulation of grain yield explained 77, 81, and 70% of the variance (RMSD = 31, 98, and 46 g/m2) for mungbean (n = 40, observed mean = 123 g/m2), peanut (n = 30, 421 g/m2), and chickpea (n = 31, 196 g/m2), respectively. Biomass at maturity was simulated less accurately, explaining 64, 76, and 71% of the variance (RMSD = 134, 236, and 125 g/m2) for mungbean, peanut, and chickpea, respectively. RMSD for biomass in lucerne (n = 24) was 85 g/m2 with an R2 of 0.55. Simulation accuracy is similar to that achieved by single-crop models and suggests that the generic approach offers promise for simulating diverse legume species without loss of accuracy or physiological rigour

    Effect of disorder on the vortex-lattice melting transition

    Full text link
    We use a three dimensional stacked triangular network of Josephson junctions as a model for the study of vortex structure in the mixed state of high Tc superconductors. We show that the addition of disorder destroys the first order melting transition occurring for clean samples. The melting transition splits in two different (continuous) transitions, ocurring at temperatures Ti and Tp (>Ti). At Ti the perpendicular-to-field superconductivity is lost, and at Tp the parallel-to-field superconductivity is lost. These results agree well with recent experiments in YBaCuO.Comment: 4 pages + 2 figure

    Pseudo-cryptic speciation in coccolithophores

    Get PDF
    Coccolithophores are a group of calcifying unicellular algae that constitute a major fraction of oceanic primary productivity, play an important role in the global carbon cycle, and are key biostratigraphic marker fossils. Their taxonomy is primarily based on the morphology of the minute calcite plates, or coccoliths, covering the cell. These are diverse and include widespread fine scale variation, of which the biological/taxonomic significance is unknown. Do they represent phenotypic plasticity, genetic polymorphisms, or species-specific characters? Our research on five commonly occurring coccolithophores supports the hypothesis that such variation represents pseudocryptic speciation events, occurring between 0.3 and 12.9 million years ago from a molecular clock estimation. This finding suggests strong stabilizing selection acting on coccolithophorid phenotypes. Our results also provide strong support for the use of fine scale morphological characters of coccoliths in the fossil record to improve biostratigraphic resolution and paleoceanographic data retrieval

    The phase diagram of high-Tc's: Influence of anisotropy and disorder

    Full text link
    We propose a phase diagram for the vortex structure of high temperature superconductors which incorporates the effects of anisotropy and disorder. It is based on numerical simulations using the three-dimensional Josephson junction array model. We support the results with an estimation of the internal energy and configurational entropy of the system. Our results give a unified picture of the behavior of the vortex lattice, covering from the very anysotropic BiSrCaCuO to the less anisotropic YBaCuO, and from the first order melting ocurring in clean samples to the continuous transitions observed in samples with defects.Comment: 8 pages with 7 figure

    Vortex structure and resistive transitions in high-Tc superconductors

    Full text link
    The nature of the resistive transition for a current applied parallel to the magnetic field in high-Tc materials is investigated by numerical simulation on the three dimensional Josephson junction array model. It is shown by using finite size scaling that for samples with disorder the critical temperature Tp for the c axis resistivity corresponds to a percolation phase transition of vortex lines perpendicularly to the applied field. The value of Tp is higher than the critical temperature for j perpendicular to H, but decreases with the thickness of the sample and with anisotropy. We predict that critical behavior around Tp should reflect in experimentally accessible quantities, as the I-V curves.Comment: 8 pages + 6 figure
    corecore