443 research outputs found
A Proteolytic Fragment from the Central Region of P53 Has Marked Sequence-Specific DNA-Binding Activity When Generated from Wild-Type but Not from Oncogenic Mutant P53-Protein
p53 is a sequence-specific DNA-binding oligomeric protein that can activate transcription from promoters bearing p53-binding sites. Whereas the activation region of p53 has been identified within the amino terminus, the location of the specific DNA-binding domain has not been reported. Thermolysin treatment of p53 protein generates a stable protease-resistant fragment that binds with marked specificity to p53 DNA-binding sites. Amino-terminal sequencing of the fragment located the thermolysin cleavage site to residue 91. Because the fragment does not contain the cdc2 phosphorylation site at Ser-315, we conclude that the the site-specific DNA-binding domain of p53 spans the central region of the protein. The vast majority of the mutations in oncogenically derived p53 proteins are located within this central portion of the molecule. Such mutant p53 proteins exhibit defective sequence-specific DNA-binding. Although thermolysin digestion of mutant p53 proteins generates proteolytic patterns that differ from wild-type protein, one mutant tested, His-273, generates a resistant' fragment that migrates with a similar electrophoretic mobility to the wild-type protease-resistant fragment. Interestingly, although intact mutant His-273 protein binds to DNA at 20-degrees-C, the thermolysin-resistant mutant fragment does not. In addition, the central protease-resistant, site-specific binding region of wild-type p53 does not demonstrate nonspecific DNA-binding. Thus, although sequences outside of the central region of p53 contribute to both nonspecific DNA-binding and oligomerization, they are not required for sequence-specific DNA-binding
The mRNA expression of SETD2 in human breast cancer: Correlation with clinico-athological parameters
BACKGROUND: SET domain containing protein 2 (SETD2) is a histone methyltransferase that is involved in transcriptional elongation. There is evidence that SETD2 interacts with p53 and selectively regulates its downstream genes. Therefore, it could be implicated in the process of carcinogenesis. Furthermore, this gene is located on the short arm of chromosome 3p and we previously demonstrated that the 3p21.31 region of chromosome 3 was associated with permanent growth arrest of breast cancer cells. This region includes closely related genes namely: MYL3, CCDC12, KIF9, KLHL18 and SETD2. Based on the biological function of these genes, SETD2 is the most likely gene to play a tumour suppressor role and explain our previous findings. Our objective was to determine, using quantitative PCR, whether the mRNA expression levels of SETD2 were consistent with a tumour suppressive function in breast cancer. This is the first study in the literature to examine the direct relationship between SETD2 and breast cancer. METHODS: A total of 153 samples were analysed. The levels of transcription of SETD2 were determined using quantitative PCR and normalized against (CK19). Transcript levels within breast cancer specimens were compared to normal background tissues and analyzed against conventional pathological parameters and clinical outcome over a 10 year follow-up period. RESULTS: The levels of SETD2 mRNA were significantly lower in malignant samples (p = 0.0345) and decreased with increasing tumour stage. SETD2 expression levels were significantly lower in samples from patients who developed metastasis, local recurrence, or died of breast cancer when compared to those who were disease free for > 10 years (p = 0.041). CONCLUSION: This study demonstrates a compelling trend for SETD2 transcription levels to be lower in cancerous tissues and in patients who developed progressive disease. These findings are consistent with a possible tumour suppressor function of this gene in breast cancer
Cell culture-based analysis of postsynaptic membrane assembly in muscle cells
We report a method for studying postsynaptic membrane assembly utilizing the replating of aneural cultures of
differentiated skeletal muscle cells onto laminin-coated surfaces. A significant limitation to the current cell culturebased
approaches has been their inability to recapitulate the multistage surface acetylcholine receptor (AChR)
redistribution events that produce complex AChR clusters found at the intact neuromuscular junction (NMJ). By taking
advantage of the ability of substrate laminin to induce advanced maturation of AChR aggregates on the surface of
myotubes, we have developed a secondary-plating method that allows more precise analysis of the signaling events
connecting substrate laminin stimulation to complex AChR cluster formation. We validate the utility of this method for
biochemical and microscopy studies by demonstrating the roles of RhoGTPases in substrate laminin-induced complex
cluster assembly
E1A signaling to p53 involves the p19(ARF) tumor suppressor
The adenovirus E1A oncogene activates p53 through a signaling pathway involving the retinoblastoma protein and the tumor suppressor p19(ARF). The ability of E1A to induce p53 and its transcriptional targets is severely compromised in ARF-null cells, which remain resistant to apoptosis following serum depletion or adriamycin treatment. Reintroduction of p19(ARF) restores p53 accumulation and resensitizes ARF-null cells to apoptotic signals. Therefore, p19(ARF) functions as part of a p53-dependent failsafe mechanism to counter uncontrolled proliferation. Synergistic effects between the p19(ARF) and DNA damage pathways in inducing p53 may contribute to E1A's ability to enhance radio- and chemosensitivity
Image cytometric analysis of p53 and mdm-2 expression in primary and recurrent mucoepidermoid carcinoma of parotid gland: immunohistochemical study
<p>Abstract</p> <p>Aims and Objectives</p> <p>This study aims to analyze immunocytochemically p53 aberrant expression and mdm-2 expression in primary and recurrent mucoepidermoid carcinoma (MEC) of parotid gland and to ascertain if expression of these markers correlates with tumor behavior, clinical outcome, histological grade and local recurrence.</p> <p>Methods</p> <p>20 cases histologically diagnosed as primary MEC with different grades were included in the study. Out of 20 cases, 7 were classified as grade I, 8 as grade II and 5 as grade III. Immunohistochemical staining of these 20 primary cases as well as 6 recurrent cases with anti-p53 and anti-mdm-2 antibodies was carried out. Area fraction of immunopositivity was estimated by image analysis software.</p> <p>Results</p> <p>16/20 primary cases were p53 +ve (80%). The p53 positive cases included 3 cases classified as grade (I), 8 cases as grade (II) and 5 cases as grade (III). All 6 recurrent cases were p53 +ve. On the other hand, 14/20 primary and only 2/6 recurrent cases were mdm-2 +ve. The mdm-2 +ve primary cases included 2 classified as grade (I), 7 as grade (II) and 5 as grade (III). 12 primary MEC showed co-expression of both p53 and mdm-2 of which 2 cases showed local recurrence.</p> <p>Conclusions</p> <p>these data suggested that expression of p53 and mdm-2 in primary and recurrent MEC correlates with the high histological grade. P53 aberrant expression is not only considered as an early event in MEC carcinogenesis but also correlates to tumor behavior and local recurrence. Mdm-2 overexpression is correlated to pathogenesis of MEC. However, no strong evidence was found between mdm-2 expression and MEC local recurrence.</p
Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress
Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synthesized ribosomal proteins are degraded by proteasomes upon inhibition of Pol I activity by actinomycin D, L5 and L11 accumulate in the ribosome-free fraction where they bind to Mdm2. This selective accumulation of free L5 and L11 is due to their mutual protection from proteasomal degradation. Furthermore, the endogenous, newly synthesized L5 and L11 continue to be imported into nucleoli even after nucleolar disruption and colocalize with Mdm2, p53, and promyelocytic leukemia protein. This suggests that the disrupted nucleoli may provide a platform for L5- and L11-dependent p53 activation, implying a role for the nucleolus in p53 activation by ribosomal biogenesis stress. These findings may have important implications with respect to understanding the pathogenesis of diseases caused by impaired ribosome biogenesis
MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells
As a survival factor for melanocytes lineage cells, MiTF plays multiple roles in development and melanomagenesis. What role MiTF plays in the DNA damage response is currently unknown. In this report we observed that MiTF was phosphorylated at serine 73 after UVC radiation, which was followed by proteasome-mediated degradation. Unlike after c-Kit stimulation, inhibiting p90RSK-1 did not abolish the band shift of MiTF protein, nor did it abolish the UVC-mediated MiTF degradation, suggesting that phosphorylation on serine 73 by Erk1/2 is a key event after UVC. Furthermore, the MiTF-S73A mutant (Serine 73 changed to Alanine via site-directed mutagenesis) was unable to degrade and was continuously expressed after UVC exposure. Compared to A375 melanoma cells expressing wild-type MiTF (MiTF-WT), cells expressing MiTF-S73A mutant showed less p21WAF1/CIP1 accumulation and a delayed p21WAF1/CIP1 recovery after UVC. Consequently, cells expressing MiTF-WT showed a temporary G1 arrest after UVC, but cells expressing MiTF-S73A mutant or lack of MiTF expression did not. Finally, cell lines with high levels of MiTF expression showed higher resistance to UVC-induced cell death than those with low-level MiTF. These data suggest that MiTF mediates a survival signal linking Erk1/2 activation and p21WAF1/CIP1 regulation via phosphorylation on serine 73, which facilitates cell cycle arrest. In addition, our data also showed that exposure to different wavelengths of UV light elicited different signal pathways involving MiTF
HEX expression and localization in normal mammary gland and breast carcinoma
BACKGROUND: The homeobox gene HEX is expressed in several cell types during different phases of animal development. It encodes for a protein localized in both the nucleus and the cytoplasm. During early mouse development, HEX is expressed in the primitive endoderm of blastocyst. Later, HEX is expressed in developing thyroid, liver, lung, as well as in haematopoietic progenitors and endothelial cells. Absence of nuclear expression has been observed during neoplastic transformation of the thyroid follicular cells. Aim of the present study was to evaluate the localization and the function of the protein HEX in normal and tumoral breast tissues and in breast cancer cell lines. METHODS: HEX expression and nuclear localization were investigated by immunohistochemistry in normal and cancerous breast tissue, as well as in breast cancer cell lines. HEX mRNA levels were evaluated by real-time PCR. Effects of HEX expression on Sodium Iodide Symporter (NIS) gene promoter activity was investigated by HeLa cell transfection. RESULTS: In normal breast HEX was detected both in the nucleus and in the cytoplasm. In both ductal and lobular breast carcinomas, a great reduction of nuclear HEX was observed. In several cells from normal breast tissue as well as in MCF-7 and T47D cell line, HEX was observed in the nucleolus. MCF-7 treatment with all-trans retinoic acid enhanced HEX expression and induced a diffuse nuclear localization. Enhanced HEX expression and diffuse nuclear localization were also obtained when MCF-7 cells were treated with inhibitors of histone deacetylases such as sodium butyrate and trichostatin A. With respect to normal non-lactating breast, the amount of nuclear HEX was greatly increased in lactating tissue. Transfection experiments demonstrated that HEX is able to up-regulate the activity of NIS promoter. CONCLUSION: Our data indicate that localization of HEX is regulated in epithelial breast cells. Since modification of localization occurs during lactation and tumorigenesis, we suggest that HEX may play a role in differentiation of the epithelial breast cell
Tumor Suppressor Protein p53 Recruits Human Sin3B/HDAC1 Complex for Down-Regulation of Its Target Promoters in Response to Genotoxic Stress
Master regulator protein p53, popularly known as the “guardian of genome” is the hub for regulation of diverse cellular pathways. Depending on the cell type and severity of DNA damage, p53 protein mediates cell cycle arrest or apoptosis, besides activating DNA repair, which is apparently achieved by regulation of its target genes, as well as direct interaction with other proteins. p53 is known to repress target genes via multiple mechanisms one of which is via recruitment of chromatin remodelling Sin3/HDAC1/2 complex. Sin3 proteins (Sin3A and Sin3B) regulate gene expression at the chromatin-level by serving as an anchor onto which the core Sin3/HDAC complex is assembled. The Sin3/HDAC co-repressor complex can be recruited by a large number of DNA-binding transcription factors. Sin3A has been closely linked to p53 while Sin3B is considered to be a close associate of E2Fs. The theme of this study was to establish the role of Sin3B in p53-mediated gene repression. We demonstrate a direct protein-protein interaction between human p53 and Sin3B (hSin3B). Amino acids 1–399 of hSin3B protein are involved in its interaction with N-terminal region (amino acids 1–108) of p53. Genotoxic stress induced by Adriamycin treatment increases the levels of hSin3B that is recruited to the promoters of p53-target genes (HSPA8, MAD1 and CRYZ). More importantly recruitment of hSin3B and repression of the three p53-target promoters upon Adriamycin treatment were observed only in p53+/+ cell lines. Additionally an increased tri-methylation of the H3K9 residue at the promoters of HSPA8 and CRYZ was also observed following Adriamycin treatment. The present study highlights for the first time the essential role of Sin3B as an important associate of p53 in mediating the cellular responses to stress and in the transcriptional repression of genes encoding for heat shock proteins or proteins involved in regulation of cell cycle and apoptosis
- …