7 research outputs found

    The innate sensor ZBP1-IRF3 axis regulates cell proliferation in multiple myeloma

    Get PDF
    Multiple myeloma is a malignancy of plasma cells initiated and driven by primary and secondary genetic events. However, myeloma plasma cell survival and proliferation might be sustained by non-genetic drivers. Z-DNA-binding protein 1 (ZBP1; also known as DAI) is an interferon-inducible, Z-nucleic acid sensor that triggers RIPK3-MLKL-mediated necroptosis in mice. ZBP1 also interacts with TBK1 and the transcription factor IRF3 but the function of this interaction is unclear, and the role of the ZBP1-IRF3 axis in cancer is not known. Here we show that ZBP1 is selectively expressed in late B-cell development in both human and murine cells and it is required for optimal T-cell-dependent humoral immune responses. In myeloma plasma cells, the interaction of constitutively expressed ZBP1 with TBK1 and IRF3 results in IRF3 phosphorylation. IRF3 directly binds and activates cell cycle genes, in part through co-operation with the plasma cell lineage-defining transcription factor IRF4, thereby promoting myeloma cell proliferation. This generates a novel, potentially therapeutically targetable and relatively selective myeloma cell addiction to the ZBP1-IRF3 axis. Our data also show a noncanonical function of constitutive ZBP1 in human cells and expand our knowledge of the role of cellular immune sensors in cancer biology

    PD-L1 testing in advanced stage lung cancer using cytology samples: Suitability and reporting issues. Comparison between two tertiary referral centers

    Get PDF
    Background: Lung cancer is the most common cause of cancer-related death worldwide and unfortunately up to 80% of patients amongst newly diagnosed are inoperable therefore the cytological sample is often the only material available for diagnosis and assessment of molecular characteristics driving the treatment. Recently immunotherapy has shown promising results in tumors expressing Program Death Ligand 1 (PD-L1). The expression of PDL1 can routinely be detected by immunohistochemistry. However, the presence of several antibodies with different cut-off and the expression of this marker by normal immune cells are generating confusion in interpretation and the need for harmonization amongst pathologists.Materials and methods: We assessed the suitability of 74 consecutive cell blocks from cytology samples for PDL1 testing and evaluate the concordance between two different antibodies (Ventana assay SP263 and Dako 223C pharmDx assay) and amongst different pathologists from two different tertiary referral center for thoracic pathology. The degree of agreement was measured by Fleiss K statistic (FKS) for categorical scores after dichotomization based on specified cutoffs. A review of discordant cases was also performed.Results: Review of the slides stained with both antibodies showed substantial agreement within our department and moderate agreement with results from the other institution. Overall less than 10% of cases were deemed inadequate. Discordant cases showed a decreased amount of tumor cells, therefore, tumor heterogeneity could be responsible for the variation in the reading.&nbsp;Conclusions: Our results show overall concordance between the two antibodies and the suitability of cytology material for PDL-1 testing.</p
    corecore