242 research outputs found

    3D acoustic propagation through an estuarine salt wedge at low-to-mid-frequencies: Modeling and measurement

    Get PDF
    Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(3),(2019): 1888-1902, doi:10.1121/1.5125258.The estuarine salt wedge presents a dynamic and highly refractive waveguide, the acoustic propagation characteristics of which are controlled by the water column sound speed gradient and boundary interactions. Acoustically, the salt wedge consists of two isospeed layers separated by a thin, three-dimensional (3D), high-gradient layer. The behavior of a broadband (500–2000 Hz) acoustic field under the influence of an estuarine salt wedge in the Columbia River estuary is explored using two 3D acoustic propagation models: 3D rays and 3D parabolic equation. These model results are compared to data collected during the field experiment. Results demonstrate that the dominant physical mechanism controlling acoustic propagation in this waveguide shifts from 3D bottom scatter in a non-refractive waveguide (before the entrance of the salt wedge) to 3D acoustic refraction with minimal bottom interaction in a refractive waveguide (when the salt wedge occupies the acoustic transect). Vertical and horizontal refraction in the water column and out-of-plane scattering by the bottom are clearly evident at specific narrowband frequencies; however, these mechanisms contribute to, but do not account for, the total observed broadband transmission loss.Environmental input to the acoustic models included high resolution bathymetric survey data provided by Guy Gelfenbaum (USGS), and modeled temperature and salinity profiles of the water column provided by Antonio Baptista, Charles Seaton, and Paul Turner at CMOP. The authors thank Derek Olson (NPS) for invaluable assistance with running the 3DPE model on NPS HPC resources. This work was supported by the Office of Naval Research.2020-03-3

    SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials

    Full text link
    Machine learning potentials are an important tool for molecular simulation, but their development is held back by a shortage of high quality datasets to train them on. We describe the SPICE dataset, a new quantum chemistry dataset for training potentials relevant to simulating drug-like small molecules interacting with proteins. It contains over 1.1 million conformations for a diverse set of small molecules, dimers, dipeptides, and solvated amino acids. It includes 15 elements, charged and uncharged molecules, and a wide range of covalent and non-covalent interactions. It provides both forces and energies calculated at the {\omega}B97M-D3(BJ)/def2-TZVPPD level of theory, along with other useful quantities such as multipole moments and bond orders. We train a set of machine learning potentials on it and demonstrate that they can achieve chemical accuracy across a broad region of chemical space. It can serve as a valuable resource for the creation of transferable, ready to use potential functions for use in molecular simulations.Comment: 19 pages, 6 figure

    Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley

    Get PDF
    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley

    Cosmology with the Highly Redshifted 21cm Line

    Get PDF
    In addition to being a probe of Cosmic Dawn and Epoch of Reionization astrophysics, the 21cm line at z>6z>6 is also a powerful way to constrain cosmology. Its power derives from several unique capabilities. First, the 21cm line is sensitive to energy injections into the intergalactic medium at high redshifts. It also increases the number of measurable modes compared to existing cosmological probes by orders of magnitude. Many of these modes are on smaller scales than are accessible via the CMB, and moreover have the advantage of being firmly in the linear regime (making them easy to model theoretically). Finally, the 21cm line provides access to redshifts prior to the formation of luminous objects. Together, these features of 21cm cosmology at z>6z>6 provide multiple pathways toward precise cosmological constraints. These include the "marginalizing out" of astrophysical effects, the utilization of redshift space distortions, the breaking of CMB degeneracies, the identification of signatures of relative velocities between baryons and dark matter, and the discovery of unexpected signs of physics beyond the Λ\LambdaCDM paradigm at high redshifts.Comment: Science white paper submitted to Decadal 2020 surve

    The Interaction of N-Acylhomoserine Lactone Quorum Sensing Signaling Molecules with Biological Membranes: Implications for Inter-Kingdom Signaling

    Get PDF
    The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling. However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic targets.The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL) produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole potential for receptor conformation and the implications for immune modulation are discussed.Our observations support previous findings that increasing AHL lipophilicity increases the immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor

    Roadmap on methods and software for electronic structure based simulations in chemistry and materials

    Get PDF
    Abstract: This Roadmap article provides a succinct, comprehensive overview of the state of electronic structure methods and software for molecular and materials simulations. Seventeen distinct sections collect insights by 51 leading scientists in the field. Each contribution addresses the status of a particular area, as well as current challenges and anticipated future advances, with a particular eye towards software related aspects and providing key references for further reading. Foundational sections cover density functional theory and its implementation in real-world simulation frameworks, Green's function based many-body perturbation theory, wave-function based and stochastic electronic structure approaches, relativistic effects and semiempirical electronic structure theory approaches. Subsequent sections cover nuclear quantum effects, real-time propagation of the electronic structure, challenges for computational spectroscopy simulations, and exploration of complex potential energy surfaces. The final sections summarize practical aspects, including computational workflows for complex simulation tasks, the impact of current and future high-performance computing architectures, software engineering practices, education and training to maintain and broaden the community, as well as the status of and needs for electronic structure based modeling from the vantage point of industry environments. Overall, the field of electronic structure software and method development continues to unlock immense opportunities for future scientific discovery, based on the growing ability of computations to reveal complex phenomena, processes and properties that are determined by the make-up of matter at the atomic scale, with high precision

    Catastrophic Floods May Pave the Way for Increased Genetic Diversity in Endemic Artesian Spring Snail Populations

    Get PDF
    The role of disturbance in the promotion of biological heterogeneity is widely recognised and occurs at a variety of ecological and evolutionary scales. However, within species, the impact of disturbances that decimate populations are neither predicted nor known to result in conditions that promote genetic diversity. Directly examining the population genetic consequences of catastrophic disturbances however, is rarely possible, as it requires both longitudinal genetic data sets and serendipitous timing. Our long-term study of the endemic aquatic invertebrates of the artesian spring ecosystem of arid central Australia has presented such an opportunity. Here we show a catastrophic flood event, which caused a near total population crash in an aquatic snail species (Fonscochlea accepta) endemic to this ecosystem, may have led to enhanced levels of within species genetic diversity. Analyses of individuals sampled and genotyped from the same springs sampled both pre (1988–1990) and post (1995, 2002–2006) a devastating flood event in 1992, revealed significantly higher allelic richness, reduced temporal population structuring and greater effective population sizes in nearly all post flood populations. Our results suggest that the response of individual species to disturbance and severe population bottlenecks is likely to be highly idiosyncratic and may depend on both their ecology (whether they are resilient or resistant to disturbance) and the stability of the environmental conditions (i.e. frequency and intensity of disturbances) in which they have evolved

    Tigers of Sundarbans in India: Is the Population a Separate Conservation Unit?

    Get PDF
    The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.Wildlife Institute of India, Dehra Dun (India)
    corecore