15 research outputs found

    Study of the cephalometric standards of individuals with normal occlusion and prevalence of the malocclusion in the city of Rio de Janeiro, Rio de Janeiro, Brazil

    Get PDF
    ABSTRACT Objective: The accomplishment of this cephalometric objective to evaluate the face characteristics of this cefalometric work individuals had to the city of this cephalometric prevalence, as well as measure the objective of malocclusion. Methods: For this study, 531 sort of individuals of the masculine organizations of Rio de Janeiro had been submitted to the clinical chait of the course of Master in Orthodontics of the Center Research Leopold Mandic, of which if it got prevalence of malocclusion. Results: Of this sample, it was observed that 22 individuals with normal occlusion and that if they had never submitted the orthodontic treatment. In these patients they had been made taken from normal head in lateral cephalometric radiographs and evaluated the cephalometrics largeness: SNA, SNB, ANB, Axle “Y”, NS.Go-Me, FMA, FMIA, IMPA, 1.NA, 1- NA, 1.NB, 1-NB, 1.1, 1.SN, 1.Go-Gn, SN.PLO, AO-BO, Line H, Z angle, P-NB, AFA, AFP and IAF. The gotten date had been submitted to the analysis with a level of significance of 5% (p< 0.05) and used descriptive statistics and the error of Dalbergh. The results showed that of the total of the evaluated sample, the malocclusion of 44.3% of Classroom I; 29.5% of Classroom II; 17.2% of Classroom III and 9.2% of normal occlusion. Conclusion: The individuals with normal occlusion of the city of Rio De Janeiro had presented equal cephalometric characteristics with many standard measures described in literature, except for the superior incisor that were presented vestibulate and the well inclined inferior incisor for vestibular contest

    Cárie precoce na primeira infância: fatores psicossociais e comportamentais associado a prevalência da cárie

    Get PDF
    Este trabalho pesquisou os diversos motivos predisponentes que provocam a cárie na infância, é a doença mais predominante segundo afirma a organização mundial da Saúde (OMS) em relação a saúde bucal. &nbsp;O objetivo deste trabalho foi realizar uma revisão de literatura com artigos pesquisados em bases de dados medline, scielo, lilacs e pubmed, a qual são fontes de informações científicas e técnica em saúde. Apurou-se que os principais fatores que desenvolvem a cárie precoce na infância são os hábitos alimentares realizados de forma inadequada como o consumo excessivo de açucares e carboidratos, além do baixo nível de escolaridade dos responsáveis que acaba dificultando o acesso a informações sobre a saúde bucal, outrossim a baixa renda familiar acaba limitando o acesso a cuidados odontológicos preventivos e curativos, a participação insuficiente dos responsáveis na escovação da criança, que pode reduzir a eficácia da higiene bucal e a correlação da doença com o acesso a serviços de saúde e fatores socioeconômicos, como a desigualdade social e a falta de políticas públicas de saúde bucal. Com isso, alguns fatores estão relacionados com a desvantagem em famílias com baixo custo de renda, educação, ocupação e entre outros, dessa forma, é importante que as crianças sejam levadas ao dentista regularmente para exames e acompanhamento. O diagnóstico precoce da doença cárie é importante para evitar que ela se propague e cause danos muitos maiores. O tratamento da cárie precoce geralmente envolve a remoção da cárie e a restauração do dente. Para prevenir a cárie, é importante escovar os dentes corretamente duas vezes ao dia e usar fio dental uma vez ao dia. Eles também devem controlar o consumo de alimentos e bebidas açucarados

    Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study.

    Get PDF
    BACKGROUND: The microcephaly epidemic, which started in Brazil in 2015, was declared a Public Health Emergency of International Concern by WHO in 2016. We report the preliminary results of a case-control study investigating the association between microcephaly and Zika virus infection during pregnancy. METHODS: We did this case-control study in eight public hospitals in Recife, Brazil. Cases were neonates with microcephaly. Two controls (neonates without microcephaly), matched by expected date of delivery and area of residence, were selected for each case. Serum samples of cases and controls and cerebrospinal fluid samples of cases were tested for Zika virus-specific IgM and by quantitative RT-PCR. Laboratory-confirmed Zika virus infection during pregnancy was defined as detection of Zika virus-specific IgM or a positive RT-PCR result in neonates. Maternal serum samples were tested by plaque reduction neutralisation assay for Zika virus and dengue virus. We estimated crude odds ratios (ORs) and 95% CIs using a median unbiased estimator for binary data in an unconditional logistic regression model. We estimated ORs separately for cases with and without radiological evidence of brain abnormalities. FINDINGS: Between Jan 15, 2016, and May 2, 2016, we prospectively recruited 32 cases and 62 controls. 24 (80%) of 30 mothers of cases had Zika virus infection compared with 39 (64%) of 61 mothers of controls (p=0·12). 13 (41%) of 32 cases and none of 62 controls had laboratory-confirmed Zika virus infection; crude overall OR 55·5 (95% CI 8·6-∞); OR 113·3 (95% CI 14·5-∞) for seven cases with brain abnormalities; and OR 24·7 (95% CI 2·9-∞) for four cases without brain abnormalities. INTERPRETATION: Our data suggest that the microcephaly epidemic is a result of congenital Zika virus infection. We await further data from this ongoing study to assess other potential risk factors and to confirm the strength of association in a larger sample size. FUNDING: Brazilian Ministry of Health, Pan American Health Organization, and Enhancing Research Activity in Epidemic Situations

    Association between microcephaly, Zika virus infection, and other risk factors in Brazil: final report of a case-control study.

    Get PDF
    BACKGROUND: A Zika virus epidemic emerged in northeast Brazil in 2015 and was followed by a striking increase in congenital microcephaly cases, triggering a declaration of an international public health emergency. This is the final report of the first case-control study evaluating the potential causes of microcephaly: congenital Zika virus infection, vaccines, and larvicides. The published preliminary report suggested a strong association between microcephaly and congenital Zika virus infection. METHODS: We did a case-control study in eight public maternity hospitals in Recife, Brazil. Cases were neonates born with microcephaly, defined as a head circumference of 2 SD below the mean. Two controls without microcephaly were matched to each case by expected date of delivery and area of residence. We tested the serum of cases and controls and the CSF of cases for detection of Zika virus genomes with quantitative RT-PCR and for detection of IgM antibodies with capture-IgM ELISA. We also tested maternal serum with plaque reduction neutralisation assays for Zika and dengue viruses. We estimated matched crude and adjusted odds ratios with exact conditional logistic regression to determine the association between microcephaly and Zika virus infection. FINDINGS: We screened neonates born between Jan 15 and Nov 30, 2016, and prospectively recruited 91 cases and 173 controls. In 32 (35%) cases, congenital Zika virus infection was confirmed by laboratory tests and no controls had confirmed Zika virus infections. 69 (83%) of 83 cases with known birthweight were small for gestational age, compared with eight (5%) of 173 controls. The overall matched odds ratio was 73·1 (95% CI 13·0-∞) for microcephaly and Zika virus infection after adjustments. Neither vaccination during pregnancy or use of the larvicide pyriproxyfen was associated with microcephaly. Results of laboratory tests for Zika virus and brain imaging results were available for 79 (87%) cases; within these cases, ten were positive for Zika virus and had cerebral abnormalities, 13 were positive for Zika infection but had no cerebral abnormalities, and 11 were negative for Zika virus but had cerebral abnormalities. INTERPRETATION: The association between microcephaly and congenital Zika virus infection was confirmed. We provide evidence of the absence of an effect of other potential factors, such as exposure to pyriproxyfen or vaccines (tetanus, diphtheria, and acellular pertussis, measles and rubella, or measles, mumps, and rubella) during pregnancy, confirming the findings of an ecological study of pyriproxyfen in Pernambuco and previous studies on the safety of Tdap vaccine administration during pregnancy. FUNDING: Brazilian Ministry of Health, Pan American Health Organization, and Enhancing Research Activity in Epidemic Situations

    Zika-related adverse outcomes in a cohort of pregnant women with rash in Pernambuco, Brazil.

    Get PDF
    BACKGROUND: While Zika virus (ZIKV) is now widely recognized as a teratogen, the frequency and full spectrum of adverse outcomes of congenital ZIKV infection remains incompletely understood. METHODS: Participants in the MERG cohort of pregnant women with rash, recruited from the surveillance system from December/2015-June/2017. Exposure definition was based on a combination of longitudinal data from molecular, serologic (IgM and IgG3) and plaque reduction neutralization tests for ZIKV. Children were evaluated by a team of clinical specialists and by transfontanelle ultrasound and were classified as having microcephaly and/or other signs/symptoms consistent with congenital Zika syndrome (CZS). Risks of adverse outcomes were quantified according to the relative evidence of a ZIKV infection in pregnancy. FINDINGS: 376 women had confirmed and suspected exposure to ZIKV. Among evaluable children born to these mothers, 20% presented with an adverse outcome compatible with exposure to ZIKV during pregnancy. The absolute risk of microcephaly was 2.9% (11/376), of calcifications and/or ventriculomegaly was 7.2% (13/180), of additional neurologic alterations was 5.3% (13/245), of ophthalmologic abnormalities was 7% (15/214), and of dysphagia was 1.8% (4/226). Less than 1% of the children experienced abnormalities across all of the domains simultaneously. Interpretation: Although approximately one-fifth of children with confirmed and suspected exposure to ZIKV in pregnancy presented with at least one abnormality compatible with CZS, the manifestations presented more frequently in isolation than in combination. Due to the rare nature of some outcomes and the possibility of later manifestations, large scale individual participant data meta-analysis and the long-term evaluation of children are imperative to identify the full spectrum of this syndrome and to plan actions to reduce damages

    Educomunicação, Transformação Social e Desenvolvimento Sustentável

    Get PDF
    Esta publicação apresenta os principais trabalhos dos GTs do II Congresso Internacional de Comunicação e Educação nos temas&nbsp;Transformação social, com os artigos que abordam principalmente Educomunicação e/ou Mídia-Educação, no contexto de políticas de diversidade, inclusão e equidade; e, em Desenvolvimento Sustentável&nbsp;os artigos que abordam os avanços da relação comunicação/educação no contexto da educação ambiental e desenvolvimento sustentável

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil

    No full text
    This work was supported by Decit, SCTIE, Brazilian Ministry of Health, Conselho Nacional de Desenvolvimento Científico - CNPq (440685/ 2016-8, 440856/2016-7 and 421598/2018-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES - (88887.130716/2016-00), European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement (734548), STARBIOS (709517), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (E-26/2002.930/2016), International Development Research Centre (IDRC) Canada (108411-001), European Union’s Horizon 2020 under grant agreements ZIKACTION (734857) and ZIKAPLAN (734548).Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Secretaria de Saúde do Estado de Mato Grosso do Sul. Laboratório Central de Saúde Pública. Campo Grande, MS, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Secretaria de Saúde do Estado da Bahia. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Gorgas Memorial Institute for Health Studies. Panama, Panama.Universidade Federal da Bahia. Vitória da Conquista, BA, Brazil.Laboratorio Central de Salud Pública. Asunción, Paraguay.Fundação Oswaldo Cruz. Bio-Manguinhos. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Instituto de Investigaciones en Ciencias de la Salud. San Lorenzo, Paraguay.Secretaria de Estado de Saúde de Mato Grosso do Sul. Campo Grande, MS, Brazil.Fundação Oswaldo Cruz. Campo Grande, MS, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, Ba, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Hospital das Forças Armadas. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Nova de Lisboa. Instituto de Higiene e Medicina Tropical. Lisboa, Portugal.University of Sydney. School of Life and Environmental Sciences and School of Medical Sciences. Marie Bashir Institute for Infectious Diseases and Biosecurity. Sydney, NSW, Australia.University of KwaZulu-Natal. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Estadual de Feira de Santana. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Universidade de Brasília. Brasília, DF, Brazil.Universidade Salvador. Salvador, BA, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hantaviroses e Rickettsioses. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública do Estado do Paraná. Curitiba, PR, Brazil.Laboratório Central de Saúde Pública do Estado de Rondônia. Porto Velho, RO, Brazil.Laboratório Central de Saúde Pública do Estado do Amazonas. Manaus, AM, Brazil.Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte. Natal, RN, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Noel Nutels. Rio de Janeiro, RJ, Brazil.Instituto Adolfo Lutz. São Paulo, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Instituto Nacional de Enfermedades Virales Humanas Dr. Julio Maiztegui. Pergamino, Argentina.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Instituto de Salud Pública de Chile. Santiago, Chile.Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez. Ciudad de México, México.Instituto Nacional de Enfermedades Infecciosas Dr Carlos G Malbrán. Buenos Aires, Argentina.Ministerio de Salud Pública de Uruguay. Montevideo, Uruguay.Instituto Costarricense de Investigación y Enseñanza em Nutrición y Salud. Tres Ríos, Costa Rica.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Universidade Federal de Pernambuco. Recife, PE, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte. MG, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, BA, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses

    Seminário de Dissertação (2024)

    No full text
    Página da disciplina de Seminário de Dissertação (MPPP, UFPE, 2022) Lista de participantes == https://docs.google.com/spreadsheets/d/1mrULe1y04yPxHUBaF50jhaM1OY8QYJ3zva4N4yvm198/edit#gid=

    Núcleos de Ensino da Unesp: artigos 2008

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore