280 research outputs found
Quantification of spatiotemporal patterns of Ras isoform expression during development
Ras proteins are important signalling hubs frequently dysregulated in cancer and in a group of developmental disorders called Rasopathies. Three Ras genes encode four proteins that differentially contribute to these phenotypes. Using quantitative real-time PCR (qRT-PCR) we have measured the gene expression profiles of each of the Ras isoforms in a panel of mouse tissues derived from a full developmental time course spanning embryogenesis through to adulthood. In most tissues and developmental stages we observe a relative contribution of KRas4Bβ>β>βNRasββ₯βKRas4Aβ>βHRas to total Ras expression with KRas4B typically representing 60-99% of all Ras transcripts. KRas4A is the most dynamically regulated Ras isoform with significant up-regulation of expression observed pre-term in stomach, intestine, kidney and heart. The expression patterns assist interpretation of the essential role of KRas in development and the preponderance of KRas mutations in cancer
Concentric lamellae - novel microanatomical structures in the articular calcified cartilage of mice.
The structure, ultrastructure and function of hyaline articular cartilage (HAC) and subchondral bone (SCB), and their involvement in the pathogenesis of osteoarthritis (OA) have been extensively researched. However, much less attention has been focused on the intervening tissue, articular calcified cartilage (ACC) and its role in the initiation and progression of OA. Using both light microscopy (LM) and transmission electron microscopy (TEM), a study of ACC in wild type (WT) mice, and mice with genetic osteoarthropathies (AKU) was undertaken to further understand the role played by ACC in the early stages of OA.Tibio-femoral joints were obtained from BALB/c WT and BALB/c AKU mice aged between 7 and 69 weeks. One joint was processed for routine histological analysis. The tip of the medial femoral condyle (MFC), which contained HAC, ACC, and SCB, was dissected from the contra-lateral joint and processed for TEM.In WT and AKU mice novel microanatomical structures, designated concentric lamellae, were identified surrounding chondrocytes in the ACC. The lamellae appeared to be laid down in association with advancement of the tidemark indicating they may be formed during calcification of cartilage matrix. The lamellae were associated with hypertrophic chondrocytes throughout the ACC.Novel microanatomical structures, termed concentric lamellae, which were present around hypertrophic chondrocytes in the ACC are described for the first time. Their apparent association with mineralisation, advancement of the tidemark, and greater abundance in a model of osteoarthropathy indicate their formation could be important in the pathogenesis of OA and AKU
Microtubule organization within mitotic spindles revealed by serial block face scanning electron microscopy and image analysis
Serial block face scanning electron microscopy (SBF-SEM) is a powerful method to analyze cells in 3D. Here, working at the resolution limit of the method, we describe a correlative light-SBF-SEM workflow to resolve microtubules of the mitotic spindle in human cells. We present four examples of uses for this workflow that are not practical by light microscopy and/or transmission electron microscopy. First, distinguishing closely associated microtubules within K-fibers; second, resolving bridging fibers in the mitotic spindle; third, visualizing membranes in mitotic cells, relative to the spindle apparatus; and fourth, volumetric analysis of kinetochores. Our workflow also includes new computational tools for exploring the spatial arrangement of microtubules within the mitotic spindle. We use these tools to show that microtubule order in mitotic spindles is sensitive to the level of TACC3 on the spindle
The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-alpha(1)-antitrypsin
Ξ±1-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-Ξ±1-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of endoplasmic reticulum (ER). It is unclear whether these inclusions are connected to the main ER network in Z-Ξ±1-antitrypsin-expressing cells. Using live cell imaging, we found that despite inclusions containing an immobile matrix of polymeric Ξ±1-antitrypsin, small ER resident proteins can diffuse freely within them. Inclusions have many features to suggest they represent fragmented ER, and some are physically separated from the tubular ER network, yet we observed cargo to be transported between them in a cytosol-dependent fashion that is sensitive to N-ethylmaleimide and dependent on Sar1 and sec22B. We conclude that protein recycling occurs between ER inclusions despite their physical separation.βDickens, J. A., OrdΓ³Γ±ez, A., Chambers, J. E., Beckett, A. J., Patel, V., Malzer, E., Dominicus, C. S., Bradley, J., Peden, A. A., Prior, I. A., Lomas, D. A., Marciniak, S. J. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-Ξ±1-antitrypsin
Serial block-face scanning electron microscopy applied to study the trafficking of 8D3-coated gold nanoparticles at the blood-brain barrier
Due to the physical and physiological properties of the blood-brain barrier (BBB), the transport of neurotherapeutics from blood to brain is still a pharmaceutical challenge. We previously conducted a series of experiments to explore the potential of the anti-transferrin receptor 8D3 monoclonal antibody (mAb) to transport neurotherapeutics across the BBB. In that study, gold nanoparticles (AuNPs) were coated with the 8D3 antibody and administered intravenously to mice. Transmission electron microscopy was used and a two-dimensional (2D) image analysis was performed to detect the AuNPs in the brain capillary endothelial cells (BCECs) and brain parenchyma. In the present work, we determined that serial block-face scanning electron microscopy (SBF-SEM) is a useful tool to study the transcytosis of these AuNPs across the BBB in three dimensions and we, therefore, applied it to gain more knowledge of their transcellular trafficking. The resulting 3D reconstructions provided additional information on the endocytic vesicles containing AuNPs and the endosomal processing that occurs inside BCECs. The passage from 2D to 3D analysis reinforced the trafficking model proposed in the 2D study, and revealed that the vesicles containing AuNPs are significantly larger and more complex than described in our 2D study. We also discuss tradeoffs of using this technique for our application, and conclude that together with other volume electron microscopy imaging techniques, SBF-SEM is a powerful approach that is worth of considering for studies of drug transport across the BBB
H-Ras Nanocluster Stability Regulates the Magnitude of MAPK Signal Output
H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf. In the current study we show that stabilizing the H-Ras-Gal-1 interaction, using bimolecular fluorescence complementation (BiFC), leads to prolonged immobilization of H-Ras.GTP in the plasma membrane which was measured by fluorescence recovery after photobleaching (FRAP), and increased signal out-put to the MAPK module. EM measurements of Raf recruitment to the H-Ras.GTP nanoclusters demonstrated that the enhanced signaling observed in the BiFC stabilized H-Ras.GTP nanocluster was attributed to increased H-Ras immobilization rather than to an increase in Raf recruitment. Taken together these data demonstrate that the magnitude of the signal output from a GTP-bound H-Ras nanocluster is proportional to its stability
Modular approach for bimodal antibacterial surfaces combining photo-switchable activity and sustained biocidal release
Photo-responsive antibacterial surfaces combining both on-demand photo-switchable activity and sustained biocidal release were prepared using sequential chemical grafting of nano-objects with different geometries and functions. The multi-layered coating developed incorporates a monolayer of near-infrared active silica-coated gold nanostars (GNS) decorated by silver nanoparticles (AgNP). This modular approach also enables us to unravel static and photo-activated contributions to the overall antibacterial performance of the surfaces, demonstrating a remarkable synergy between these two mechanisms. Complementary microbiological and imaging evaluations on both planktonic and surface-attached bacteria provided new insights on these distinct but cooperative effects
New Perspectives, Opportunities, and Challenges in Exploring the Human Protein Kinome.
The human protein kinome comprises 535 proteins that, with the exception of approximately 50 pseudokinases, control intracellular signaling networks by catalyzing the phosphorylation of multiple protein substrates. While a major research focus of the last 30 years has been cancer-associated Tyr and Ser/Thr kinases, over 85% of the kinome has been identified to be dysregulated in at least one disease or developmental disorder. Despite this remarkable statistic, for the majority of protein kinases and pseudokinases, there are currently no inhibitors progressing toward the clinic, and in most cases, details of their physiologic and pathologic mechanisms remain at least partially obscure. By curating and annotating data from the literature and major public databases of phosphorylation sites, kinases, and disease associations, we generate an unbiased resource that highlights areas of unmet need within the kinome. We discuss strategies and challenges associated with characterizing catalytic and noncatalytic outputs in cells, and describe successes and new frontiers that will support more comprehensive cancer-targeting and therapeutic evaluation in the future. Cancer Res; 78(1); 15-29. Β©2017 AACR
Rasl11b Knock Down in Zebrafish Suppresses One-Eyed-Pinhead Mutant Phenotype
The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFΞ²/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oepβ/β mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors
- β¦