3,291 research outputs found

    Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    Get PDF
    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm

    Material Strength in Polymer Shape Deposition Manufacturing

    Get PDF
    Shape Deposition Manufacturing (SDM) is a layered manufacturing process involving an iterative combination of material addition and material removal. Polymer SDM processes have used castable thermoset resins to build a variety of parts. The strength of such parts is determined by the bulk material properties of the part materials and by their interlayer adhesion. This paper describes tensile testing of three thermoset resins used for SDM - two polyurethane resins and one epoxy resin. Both monolithic specimens and specimens with two interlayer !nterfaces were tested. Interlayer tensile strengths were found to vary greatly among the three matenals, from 5-40 MPa.Mechanical Engineerin

    Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    Get PDF
    A capacitance based proximity sensor, the 'Capaciflector' (Vranish 92), has been developed at the Goddard Space Flight Center of NASA. We had investigated the use of this sensor for avoiding and maneuvering around unexpected objects (Mahalingam 92). The approach developed there would help in executing collision-free gross motions. Another important aspect of robot motion planning is fine motion planning. Let us classify manipulator robot motion planning into two groups at the task level: gross motion planning and fine motion planning. We use the term 'gross planning' where the major degrees of freedom of the robot execute large motions, for example, the motion of a robot in a pick and place type operation. We use the term 'fine motion' to indicate motions of the robot where the large dofs do not move much, and move far less than the mirror dofs, such as in inserting a peg in a hole. In this report we describe our experiments and experiences in this area

    Enhancing Ionic Conductivity of Bulk Single Crystal Yttria-Stabilized Zirconia by Tailoring Dopant Distribution

    Full text link
    We present an ab-initio based kinetic Monte Carlo model for ionic conductivity in single crystal yttria-stabilized zirconia. Ionic interactions are taken into account by combining density functional theory calculations and the cluster expansion method and are found to be essential in reproducing the effective activation energy observed in experiments. The model predicts that the effective energy barrier can be reduced by 0.15-0.25 eV by arranging the dopant ions into a super-lattice.Comment: Submitted to Phys. Rev. Lett. on 8/3/2010 (in review

    Tuning of the Gap in a Laughlin-Bychkov-Rashba Incompressible Liquid

    Full text link
    We report on our investigation of the influence of Bychkov-Rashba spin-orbit interaction (SOI) on the incompressible Laughlin state. We find that experimentally obtainable values of the spin-orbit coupling strength can induce as much as a 25% increase in the quasiparticle-quasihole gap Eg at low magnetic fields in InAs, thereby increasing the stability of the liquid state. The SOI-modulated enhancement of Eg is also significant for filling factors 1/5 and 1/7, where the FQH state is usually weak. This raises the intriguing possibility of tuning, via the SO coupling strength, the liquid to solid transition to much lower densities.Comment: 4 pages, 3 figure
    corecore