83 research outputs found
Insights on Simulating Summer Warming of the Great Lakes: Understanding the Behavior of a Newly Developed Coupled Lake-Atmosphere Modeling System
The Laurentian Great Lakes are the world\u27s largest freshwater system and regulate the climate of the Great Lakes region, which has been increasingly experiencing climatic, hydrological, and ecological changes. An accurate mechanistic representation of the Great Lakes thermal structure in Regional Climate Models (RCMs) is paramount to studying the climate of this region. Currently, RCMs have primarily represented the Great Lakes through coupled one-dimensional (1D) column lake models; this approach works well for small inland lakes but is unable to resolve the realistic hydrodynamics of the Great Lakes and leads to inaccurate representations of lake surface temperature (LST) that influence regional climate and weather patterns. This work overcomes this limitation by developing a fully two-way coupled modeling system using the Weather Research and Forecasting model and a three-dimensional (3D) hydrodynamic model. The coupled model system resolves the interactive physical processes between the atmosphere, lake, and surrounding watersheds; and validated against a range of observational data. The model is then used to investigate the potential impacts of lake-atmosphere coupling on the simulated summer LST of Lake Superior. By evaluating the difference between our two-way coupled modeling system and our observation-driven modeling system, we find that coupled-lake atmosphere dynamics can lead to a higher LST during June-September through higher net surface heat flux entering the lake in June and July and a lower net surface heat flux entering the lake in August and September. The unstratified water in June distributes the entering surface heat flux throughout the water column leading to a minor LST increase, while the stratified waters of July create a conducive thermal structure for the water surface to warm rapidly under the higher incoming surface heat flux. This research provides insight into the coupled modeling system behavior, which is critical for enhancing our predictive understanding of the Great Lakes climate system
Superhumps in Cataclysmic Binaries. XXIII. V442 Ophiuchi and RX J1643.7+3402
We report the results of long observing campaigns on two novalike variables:
V442 Ophiuchi and RX J1643.7+3402. These stars have high-excitation spectra,
complex line profiles signifying mass loss at particular orbital phases, and
similar orbital periods (respectively 0.12433 and 0.12056 d). They are
well-credentialed members of the SW Sex class of cataclysmic variables. Their
light curves are also quite complex. V442 Oph shows periodic signals with
periods of 0.12090(8) and 4.37(15) days, and RX J1643.7+3402 shows similar
signals at 0.11696(8) d and 4.05(12) d. We interpret these short and long
periods respectively as a "negative superhump" and the wobble period of the
accretion disk. The superhump could then possibly arise from the heating of the
secondary (and structures fixed in the orbital frame) by inner-disk radiation,
which reaches the secondary relatively unimpeded since the disk is not
coplanar.
At higher frequencies, both stars show another type of variability:
quasi-periodic oscillations (QPOs) with a period near 1000 seconds. Underlying
these strong signals of low stability may be weak signals of higher stability.
Similar QPOs, and negative superhumps, are quite common features in SW Sex
stars. Both can in principle be explained by ascribing strong magnetism to the
white dwarf member of the binary; and we suggest that SW Sex stars are
borderline AM Herculis binaries, usually drowned by a high accretion rate. This
would provide an ancestor channel for AM Hers, whose origin is still
mysterious.Comment: PDF, 41 pages, 4 tables, 16 figures; accepted, in press, to appear
December 2002, PASP; more info at http://cba.phys.columbia.edu
Saving the worldâs terrestrial megafauna
From the late Pleistocene to the Holocene, and now the so called Anthropocene, humans have been driving an ongoing series of species declines and extinctions (Dirzo et al. 2014). Large-bodied mammals are typically at a higher risk of extinction than smaller ones (Cardillo et al. 2005). However, in some circumstances terrestrial megafauna populations have been able to recover some of their lost numbers due to strong conservation and political commitment, and human cultural changes (Chapron et al. 2014). Indeed many would be in considerably worse predicaments in the absence of conservation action (Hoffmann et al. 2015). Nevertheless, most mammalian megafauna face dramatic range contractions and population declines. In fact, 59% of the worldâs largest carnivores (â„ 15 kg, n = 27) and 60% of the worldâs largest herbivores (â„ 100 kg, n = 74) are classified as threatened with extinction on the International Union for the Conservation of Nature (IUCN) Red List (supplemental table S1 and S2). This situation is particularly dire in sub-Saharan Africa and Southeast Asia, home to the greatest diversity of extant megafauna (figure 1). Species at risk of extinction include some of the worldâs most iconic animalsâsuch as gorillas, rhinos, and big cats (figure 2 top row)âand, unfortunately, they are vanishing just as science is discovering their essential ecological roles (Estes et al. 2011). Here, our objectives are to raise awareness of how these megafauna are imperiled (species in supplemental table S1 and S2) and to stimulate broad interest in developing specific recommendations and concerted action to conserve them
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animalsâ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program âAdvanced Instrumentation for Wildlife Protectionâ, Fondation SegrĂ©, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier dâAuvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governorâs Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Ăzkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, vĂŠrdier og vĂŠrktĂžjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanyâs Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de DouĂ©-la-Fontaine, Zoo Dresden, Zoo Idaho, KolmĂ„rden Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y TecnologĂa (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Unionâs Horizon 2020 research and innovation program under the Marie SkĆodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the âInvestissements dâavenirâ program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMĂ©RA/Aix-Marseille UniversitĂ©, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germanyâs Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog
Recommended from our members
Averting biodiversity collapse in tropical forest protected areas
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenonÂčâ»Âł. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stressesâŽâ»âč. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the worldâs major tropical regions. Our analysis reveals great variation in reserve âhealthâ: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.Keywords: Ecology, Environmental scienc
- âŠ