61 research outputs found

    Deformation pattern in the underthrust carbonate-rich sequence of the Sibillini Thrust (central Italy): insights for shear zone evolution in modern subduction complexes

    Get PDF
    Modern convergent zones at tropical latitudes are characterized by subduction of carbonate sediment. Although carbonate response to deformation is different from clay, they are commonly treated as having a similar rheology. This approximation, though, is inadequate since carbonate behavior is complicated by cementation and pressure solution. Our goal, here, is to focus on the deformation of carbonate sediment in the footwall of a major fossil thrust zone and compare it with a possible scenario in a modern environment. The focus area is the Monti Sibillini Thrust, in the Umbria-Marche sector of the Northern Apennines where the pelagic, Late Eocene-Oligocene carbonates of the Scaglia Cinerea Formation are underthrusted beneath the late Cretaceous-Middle Eocene Scaglia Rossa Formation. The data collected during this meso-structural study allowed for an interpretation of the temporal and spatial relationships between the observed deformation structures (S-C deformation bands, shear veins and stylolites). Thes..

    NeuronUnityIntegration2. 0. A Unity Based Application for Motion Capture and Gesture Recognition

    Get PDF
    NeuronUnityIntgration2.0 (demo video is avilable at http://tiny.cc/u1lz6y) is a plugin for Unity which provides gesture recognition functionalities through the Perception Neuron motion capture suit. The system offers a recording mode, which guides the user through the collection of a dataset of gestures, and a recognition mode, capable of detecting the recorded actions in real time. Gestures are recognized by training Support Vector Machines directly within our plugin. We demonstrate the effectiveness of our application through an experimental evaluation on a newly collected dataset. Furthermore, external applications can exploit NeuronUnityIntgration2.0's recognition capabilities thanks to a set of exposed API

    Optical constants modelling in silicon nitride membrane transiently excited by EUV radiation.

    Get PDF
    We hereby report on a set of transient optical reflectivity and transmissivity measurements performed on silicon nitride thin membranes excited by extreme ultraviolet (EUV) radiation from a free electron laser (FEL). Experimental data were acquired as a function of the membrane thickness, FEL fluence and probe polarization. The time dependence of the refractive index, retrieved using Jones matrix formalism, encodes the dynamics of electron and lattice excitation following the FEL interaction. The observed dynamics are interpreted in the framework of a two temperature model, which permits to extract the relevant time scales and magnitudes of the processes. We also found that in order to explain the experimental data thermo-optical effects and inter-band filling must be phenomenologically added to the model

    Towards jitter-free pump-probe measurements at seeded free electron laser facilities

    Get PDF
    X-ray free electron lasers (FEL) coupled with optical lasers have opened unprecedented opportunities for studying ultrafast dynamics in matter. The major challenge in pump-probe experiments using FEL and optical lasers is synchronizing the arrival time of the two pulses. Here we report a technique that benefits from the seeded-FEL scheme and uses the optical seed laser for nearly jitter-free pump-probe experiments. Timing jitter as small as 6 fs has been achieved and confirmed by measurements of FEL-induced transient reflectivity changes of Si3N4 using both collinear and non-collinear geometries. Planned improvements of the experimental set-up are expected to further reduce the timing jitter between the two pulses down to fs level

    FEL stochastic spectroscopy revealing silicon bond softening dynamics

    Full text link
    Time-resolved X-ray Emission/Absorption Spectroscopy (Tr-XES/XAS) is an informative experimental tool sensitive to electronic dynamics in materials, widely exploited in diverse research fields. Typically, Tr-XES/XAS requires X-ray pulses with both a narrow bandwidth and sub-picosecond pulse duration, a combination that in principle finds its optimum with Fourier transform-limited pulses. In this work, we explore an alternative xperimental approach, capable of simultaneously retrieving information about unoccupied (XAS) and occupied (XES) states from the stochastic fluctuations of broadband extreme ultraviolet pulses of a free-electron laser. We used this method, in combination with singular value decomposition and Tikhonov regularization procedures, to determine the XAS/XES response from a crystalline silicon sample at the L2,3-edge, with an energy resolution of a few tens of meV. Finally, we combined this spectroscopic method with a pump-probe approach to measure structural and electronic dynamics of a silicon membrane. Tr-XAS/XES data obtained after photoexcitation with an optical laser pulse at 390 nm allowed us to observe perturbations of the band structure, which are compatible with the formation of the predicted precursor state of a non-thermal solid-liquid phase transition associated with a bond softening phenomenon

    Timing methodologies and studies at the FERMI free-electron laser.

    Get PDF
    Time-resolved investigations have begun a new era of chemistry and physics, enabling the monitoring in real time of the dynamics of chemical reactions and matter. Induced transient optical absorption is a basic ultrafast electronic effect, originated by a partial depletion of the valence band, that can be triggered by exposing insulators and semiconductors to sub-picosecond extreme-ultraviolet pulses. Besides its scientific and fundamental implications, this process is very important as it is routinely applied in free-electron laser (FEL) facilities to achieve the temporal superposition between FEL and optical laser pulses with tens of femtoseconds accuracy. Here, a set of methodologies developed at the FERMI facility based on ultrafast effects in condensed materials and employed to effectively determine the FEL/laser cross correlation are presented

    Officine di lucerne ad Aquileia: caratterizzazione fisico-chimica

    Get PDF

    Pellets of MgH2-based Composites as Practical Material for Solid State Hydrogen Storage

    Get PDF
    Hydrogenation properties and mechanical stability of pellets made starting from compressed ball-milled MgH2 powders mixed with catalysts (Nb2O5 and graphite) and a binding agent (aluminium powder) have been investigated. Structural characterization with X-ray diffraction and gas\u2013solid reaction kinetic and thermodynamic tests with a Sievert's apparatus have been done on the samples up to 50 hydrogen absorption/desorption (a/d) cycles. The best cycling behaviour and mechanical strength stability have been observed for pellets of catalysed MgH2 powders added with 5 wt% aluminium annealed in vacuum at 450 \ub0C before starting the a/d cycles. This mechanical stability to cycles has been attributed to the formation of a solid solution of aluminium in magnesium

    The problem of solid state hydrogen storage

    No full text
    Abstract A short review of the materials under investigation suitable for solid state hydrogen storage is presented, with particular reference to the experimental activity carried out at the laboratory of Hydrogen Group of Padova University

    NeuronUnityIntegration2. 0. A Unity Based Application for Motion Capture and Gesture Recognition

    No full text
    NeuronUnityIntgration2.0 (demo video is avilable at http://tiny.cc/u1lz6y) is a plugin for Unity which provides gesture recognition functionalities through the Perception Neuron motion capture suit. The system offers a recording mode, which guides the user through the collection of a dataset of gestures, and a recognition mode, capable of detecting the recorded actions in real time. Gestures are recognized by training Support Vector Machines directly within our plugin. We demonstrate the effectiveness of our application through an experimental evaluation on a newly collected dataset. Furthermore, external applications can exploit NeuronUnityIntgration2.0's recognition capabilities thanks to a set of exposed API
    corecore