193 research outputs found

    Understanding depletion forces beyond entropy

    Full text link
    The effective interaction energy of a colloidal sphere in a suspension containing small amounts of non-ionic polymers and a flat glass surface has been measured and calculated using total internal reflection microscopy (TIRM) and a novel approach within density functional theory (DFT), respectively. Quantitative agreement between experiment and theory demonstrates that the resulting repulsive part of the depletion forces cannot be interpreted entirely in terms of entropic arguments but that particularly at small distances (≲\lesssim 100 nm) attractive dispersion forces have to be taken into account

    Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion

    Full text link
    Computer simulations and theory are used to systematically investigate how the effective force between two big colloidal spheres in a sea of small spheres depends on the basic (big-small and small-small) interactions. The latter are modeled as hard-core pair potentials with a Yukawa tail which can be both repulsive or attractive. For a repulsive small-small interaction, the effective force follows the trends as predicted by a mapping onto an effective non-additive hard-core mixture: both a depletion attraction and an accumulation repulsion caused by small spheres adsorbing onto the big ones can be obtained depending on the sign of the big-small interaction. For repulsive big-small interactions, the effect of adding a small-small attraction also follows the trends predicted by the mapping. But a more subtle ``repulsion through attraction'' effect arises when both big-small and small-small attractions occur: upon increasing the strength of the small-small interaction, the effective potential becomes more repulsive. We have further tested several theoretical methods against our computer simulations: The superposition approximation works best for an added big-small repulsion, and breaks down for a strong big-small attraction, while density functional theory is very accurate for any big-small interaction when the small particles are pure hard-spheres. The theoretical methods perform most poorly for small-small attractions.Comment: submitted to PRE; New version includes an important quantitative correction to several of the simulations. The main conclusions remain unchanged thoug

    Characterizing generated charged inverse micelles with transient current measurements

    Get PDF
    We investigate the generation of charged inverse micelles in nonpolar surfactant solutions relevant for applications such as electronic ink displays and liquid toners. When a voltage is applied across a thin layer of a nonpolar surfactant solution between planar electrodes, the generation of charged inverse micelles leads to a generation current. From current measurements it appears that such charged inverse micelles generated in the presence of an electric field behave differently compared to those present in equilibrium in the absence of a field. To examine the origin of this difference, transient current measurements in which the applied voltage is suddenly increased are used to measure the mobility and the amount of generated charged inverse micelles. The mobility and the corresponding hydrodynamic size are found to be similar to those of charged inverse micelles present in equilibrium, which indicates that other properties determine their different behavior. The amplitude and shape of the transient currents measured as a function of the surfactant concentration confirm that the charged inverse micelles are generated by bulk disproportionation. A theoretical model based on bulk disproportionation with simulations and analytical approximations is developed to analyze the experimental transient currents

    Downregulation of SFRP5 expression and its inverse correlation with those of MMP-7 and MT1-MMP in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As negative regulators in Wnt signaling, Secreted Frizzled-Related Proteins (SFRPs) are downregulated in a series of human cancers; and specifically, some matrix metalloproteinases (MMPs), including MMP-2, MMP-7, MMP-9 and MT1-MMP, are frequently overexpressed in gastric cancer. The aim of this study is to determine the expression status of SFRP5 in gastric cancer and explore the correlation between both the expression of SFRP5 and that of these MMPs in this cancer.</p> <p>Methods</p> <p>Expression of SFRP5, MMP-2, MMP-7, MMP-9 and MT1-MMP was determined by real-time PCR, RT-PCR or Western blotting. The methylation status of <it>SFRP5 </it>was detected by Methylation-specific PCR (MSP). Cell lines with <it>SFRP5 </it>methylation were demethylated by a DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (DAC). KatoIII cells were transfected with pcDNA3.1 <it>SFRP5 </it>vector to strengthen SFRP5 expression. To abrogate SFRP5 expression in MKN1 cells, <it>SFRP5 </it>RNAi plamid was used to transfect them.</p> <p>Results</p> <p>SFRP5 expression was remarkably downregulated in 24 of 32 primary gastric cancer specimens, and even was not detectable in 5 of 8 gastric cancer cell lines. MMP-7 and MT1-MMP mRNA showed a stronger expression in these 24 specimens compared to the other 8 specimens. They also showed higher levels in gastric cancer cell lines AGS and NCI-N87 which had no SFRP5 expression, compared to MKN1 with strong SFRP5 expression. However, they were significantly downregulated, with SFRP5 expression restored in AGS and NCI-N87; and were considerably upregulated with it abrogated in MKN1.</p> <p>Conclusion</p> <p>The results indicate there are frequent occurrences of downregualtion of SFRP5 expression in gastric cancer, primarily due to <it>SFRP5 </it>methylation. It seems to be responsible for the upregulation of MMP-7 expression and MT1-MMP expression on the ground that they are inversely correlated with SFRP5 expression.</p

    Tone burst-evoked otoacoustic emissions in neonates: normative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tone-burst otoacoustic emissions (TBOAEs) have not been routinely studied in pediatric populations, although tone burst stimuli have greater frequency specificity compared with click sound stimuli. The present study aimed (1) to determine an appropriate stimulus level for neonatal TBOAE measurements when the stimulus center frequency was 1 kHz, (2) to explore the characteristics of 1 kHz TBOAEs in a neonatal population.</p> <p>Methods</p> <p>A total of 395 normal neonates (745 ears) were recruited. The study consisted of two parts, reflecting the two study aims. Part I included 40 normal neonatal ears, and TBOAE measurement was performed at five stimulus levels in the range 60–80 dB peSPL, with 5 dB incremental steps. Part II investigated the characteristics of the 1 kHz TBOAE response in a large group of 705 neonatal ears, and provided clinical reference criteria based on these characteristics.</p> <p>Results</p> <p>The study provided a series of reference parameters for 1 kHz TBOAE measurement in neonates. Based on the results, a suggested stimulus level and reference criteria for 1 kHz TBOAE measures with neonates were established. In addition, time-frequency analysis of the data gave new insight into the energy distribution of the neonatal TBOAE response.</p> <p>Conclusion</p> <p>TBOAE measures may be a useful method for investigating cochlear function at specific frequency ranges in neonates. However, further studies of both TBOAE time-frequency analysis and measurements in newborns are needed.</p

    Inhibition of Mesothelin as a Novel Strategy for Targeting Cancer Cells

    Get PDF
    Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA) decreased viability of cancer cells from different origins such as mesothelioma (H2373), ovarian cancer (Skov3 and Ovcar-5) and pancreatic cancer (Miapaca2 and Panc-1). Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition). Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress) pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429) with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies
    • …
    corecore