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Abstract

Background: Research into event-based text mining from the biomedical literature has been growing in popularity
to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced
search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically
ignore additional information within the textual context of events that can determine, amongst other things, whether
an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously
reported knowledge, and whether it is speculated or negated. We refer to such contextual information as
meta-knowledge. The automatic recognition of such information can permit the training of systems allowing
finer-grained searching of events according to the meta-knowledge that is associated with them.

Results: Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated
meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge
information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in
order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but
also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of
EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP’09 Shared Task corpus.
EventMine-MK has been evaluated on the BioNLP’09 Shared Task subtask of detecting negated and speculated events.
Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task.

Conclusions: We have constructed the first practical system that extracts both events and associated, detailed
meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information
can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing
with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search
functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge)
and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems,
EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure,
U-Compare.

Background
Biomedical text mining [1-3] has focussed largely on
recognising relevant biomedical entities and binary rela-
tions between these entities (e.g., protein-protein interac-
tions [4,5], gene-disease associations [6,7], etc.). However,
the extraction of biomedical events from the literature
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has been a recent focus of research into biomedical nat-
ural language processing, since events are crucial for
understanding biomedical processes and functions [3].
Events constitute structured representations of biomedi-
cal knowledge. They are usually organised around verbs
(e.g., activate, inhibit) or nominalised verbs (e.g., expres-
sion), which we call trigger expressions. Events have argu-
ments, which contribute towards the description of the
event. These arguments, which can either be entities (e.g.,
p53) or other events, are often assigned semantic roles,
which characterise the contribution of the argument to
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the description of the event. Typical examples of seman-
tic roles include Cause (what is responsible for the event
occurring) and Theme (what is affected by the event
occurring). The following sentence serves to exemplify the
general format of events:

(i) In addition, it has been established that tumor
necrosis factor-alpha (TNF-alpha) can activate the
expression of wild type p53 in concert with the
nuclear transcription factor, NF-kappa B. (PMID:
10416957 [8])

Sentence (i) is annotated with 2 events in the BioNLP’09
Shared Task corpus [9].

• Event ID: E1, Type: Gene expression, Trigger:
expression, Theme: p53

• Event ID: E2, Type: Positive regulation, Trigger:
activate, Cause: tumor necrosis factor-alpha
(TNF-alpha), Theme: E1

The details provided in events are vital for the devel-
opment of advanced semantic search applications that
allow search criteria to be specified in terms of con-
straints on these structured events, rather than using the
more traditional keywords. However, the textual context
of events often provides important information about how
they are to be interpreted. We term such information
meta-knowledge [10]. In most of the existing corpora used
for biomedical text mining, such information is either
not encoded at all in the event annotations, or other-
wise only limited information is present. For example, the
BioInfer [11] corpus annotates negated events, whilst the
GENIA event corpus [12] and the two BioNLP shared
task corpora [9,13] include both negation and basic spec-
ulation information. In the shared task corpora, specula-
tion annotation is limited to a simple binary distinction
between speculated and non-speculated events. Events in
the GENIA event corpus are annotated according to 3 dif-
ferent levels of certainty, but the meaning of each level is
not clearly defined. Although the basic meta-knowledge
annotation in these corpora allows some useful distinc-
tions between events to be identified, it is not sufficient
to distinguish between events that express the following
types of information [10,14]:

• Accepted facts vs. experimental findings.
• Hypotheses vs. interpretations of experimental

results.
• Previously reported findings vs. new findings.

The identification of such types of information is only pos-
sible if different types of contextual information are con-
sidered, e.g., whether the knowledge expressed by events
is supported through experimental evidence, or through
the citing of references.

The identification of eventmeta-knowledge can support
various domain-specific applications, such as pathway
construction and deep semantic search, to satisfy a vari-
ety of information needs [14]. This leads to a finer grained
level of information extraction, in which papers can be
analysed from several different viewpoints. The extrac-
tion of fine-grained information is useful not only for
biomedical text mining, but also for semantic publishing
applications [15-18].
In response to the benefits of recognising event meta-

knowledge, as outlined above, we have built an inte-
grated system that automatically extracts biomedical
events from the literature, and determines associated
meta-knowledge, using machine learning methods. The
new system, called EventMine-MK, is an extension of
EventMine [19], a machine learning-based state-of-the-
art event extraction system that aims to extract structured
events with explicit links between triggers and arguments.
The EventMine-MK system was trained on the version of
the GENIA event corpus [12] that has been enriched with
detailed meta-knowledge [10] (henceforth referred to as
“the GENIA-MK corpus”).
We chose to use the GENIA-MK corpus for train-

ing for a number of reasons. Firstly, in contrast to
other event corpora that include only limited informa-
tion about the interpretation of events, the GENIA-MK
corpus includes detailed meta-knowledge annotation for
each of the 36,858 events in the corpus. The annotation
consists of five different dimensions, each encoding a dif-
ferent aspect of event interpretation, i.e., Knowledge Type,
Certainty Level, Polarity, Manner and Source [15,20,21].
Each dimension has a fixed set of values, which are clearly
defined in the annotation guidelines. Secondly, this cor-
pus is by far the largest of the all of the event corpora.
Thirdly, other event corpora generally have larger num-
bers of event and entity types, which can make the event
extraction process more difficult. Since the focus of our
work is on the ability of our integrated EventMine-MK
system to assign detailed meta-knowledge to extracted
events, we wanted to avoid adding extra complexity to the
event extraction task.
The EventMine-MK system was constructed in two

stages. Firstly, we trained a system to assign meta-
knowledge to pre-annotated biomedical events in the
GENIA-MK corpus. Intrinsic, stand-alone evaluation of
this initial system reveals that its performance in assign-
ing values of different meta-knowledge dimensions to
events ranges between 59.2% and 79.7% (macro-averaged
F-scores; F-score is a harmonic mean of precision and
recall). Compared to a baseline in which the most com-
monly annotated value in each dimension is assigned, our
system shows encouraging performance, with improve-
ments in F-score over the baseline ranging between 8.5%
and 49.6%, according to the meta-knowledge dimension
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under consideration. Secondly, we integrated the meta-
knowledge assignment system with EventMine. Thus aug-
mented, EventMine-MK can perform both automatic
extraction of events from the literature and automatic
assignment of meta-knowledge to these extracted events.
Since detailed meta-knowledge annotation at the event
level is a new concept, and the GENIA-MK corpus has
only recently been released, our system is the first that is
able to assign 5 different dimensions of meta-knowledge
to events. However, in order to allow comparison with
other systems, we have evaluated part of the function-
ality of EventMine-MK, by applying it to the task of
extracting negated and speculated events, which was a
subtask of the BioNLP’09 Shared Task (BioNLP’09 ST)
[9]. Our results demonstrate that EventMine-MK out-
performs other state-of-the-art systems that participated
in this task. In order to make it simple to integrate
EventMine-MK with larger text mining systems, it has
been made available as a UIMA component within the U-
Compare interoperable text mining platform [22], which
allows the construction of text mining workflows via a
drag-and-drop interface.

Event extraction
Research into the automatic extraction of events has
been stimulated by two shared tasks (STs) focussing on
event extraction (i.e., BioNLP’09 ST [9] and the BioNLP
Shared Task 2011 (BioNLP ST’11) [13,23]). As a result
of these shared tasks, several new state-of the-art event
extraction systems have been reported that can extract
core events, such as Binding, Regulation, etc., from the
BioNLP’09 ST corpus (henceforth referred to as “the
ST corpus”) and the GENIA event extraction task cor-
pus from BioNLP-ST’11 (henceforth referred to as “the
BioNLP-ST’11 GENIA corpus”) with F-scores greater
than 55% (e.g., [24,25]).

Event corpora
Figure 1 illustrates relations and events related to one or
more entities [3]. A relation is typically represented by
a pair of bio-entities, proteins, diseases, etc. Example (a)
in Figure 1 illustrates two such relations that involve the
entity p65. This entity is in Location relations with both
the entity cytoplasm and the entity nucleus. Example (d) in
Figure 1 shows the same sentence with event annotation.
There is a single Localization event that involves all three
entities. The event expresses the fact that p65 localises
from cytoplasm to nucleus. Thus, the use of events rather
than relations allows for a more detailed encoding of the
knowledge that is expressed in texts. The exact represen-
tation of events is flexible, and can be adapted to specific
user needs. A further type of structured representation of
knowledge in text that is somewhat comparable to events
is the “nano-publication” [17,18]. Nano-publications are

based on linked data/RDF, and consist only of sim-
ple subject-predicate-object triples. Thus, compared to
events, their expressiveness and flexibility is limited.
Both the BioNLP’09 ST and the BioNLP ST’11 provided

corpora with gold-standard event annotations. These can
be used to train systems, as well as acting as benchmarks
for the evaluation of new systems. For instance, the ST
corpus consists of 1,210 MEDLINE abstracts and covers
13,588 biomolecular events involving genes or proteins.
This corpus was generated by extracting and reorganising
a subset of the events and named entities (NEs) con-
tained within the GENIA event corpus [12], in order to
create a more tractable resource on which event extrac-
tion systems can be trained. Table 1 summarises the
event types and their arguments in the ST corpus. The
corpus consists of 9 different types of events, including
five simple event types (Gene Expression, Transcription,
Protein metabolism, Phosphorylation and Localization),
each of which takes one core Theme argument, a multi-
participant binding event (Binding) and three regulation
events (Regulation, Positive regulation and Negative reg-
ulation). The regulation events are used to capture both
biological regulation and general causation. Examples (d),
(e) and (f ) in Figure 1 illustrate simple, binding and regu-
lation events, respectively. The participants of both simple
and binding events are specified to be of the general Pro-
tein type, while regulation-type events can also take other
events as arguments, creating complex event structures.
Some of these events take secondary arguments repre-
senting locations or sites. Events in the ST corpus are also
annotated for negation and speculation.
In addition to the GENIA event corpus and the cor-

pora from the two BioNLP STs, a number of other gold-
standard annotated corpora of biomedical events have
been produced by different research groups; each corpus
varies in terms of target domain, size, types of events iden-
tified, and types and numbers of arguments annotated.
BioInfer, the GENIA event corpus and GREC [26] all share
similar event representations to the one illustrated above,
although there is a substantial difference in their sizes: the
GENIA event corpus is the largest, containing contain-
ing 1,000 abstracts, GREC contains 240 abstracts, while
BioInfer contains 1,110 sentences. The representations of
the GeneReg [27] and Angiogenesis Bio-Process [28] cor-
pora are somewhat different. GeneReg, which consists of
314 abstracts, does not annotate explicit links between
event triggers and arguments, while the Angiogenesis Bio-
Process corpus (262 abstracts) annotates events as single
spans containing both triggers and arguments, without
identifying the internal structure of the events.

Event extraction systems
A large number of event extraction systems have been
reported, both as part of the two BioNLP STs described
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Figure 1 Relation (left) and event (right) representations. Three sentences are shown. Each sentence covers a different type of relation/event.
Relation annotations for the three sentences are shown on the left hand side, while event annotations are shown on the right-hand side. Examples
a) and d) concern Localization, b) and e) concern Binding, and c) and f) concern Regulation.

above, and subsequently. The STs provided the first stim-
ulus for the development of systems to extract the types
of structured events described above. The functionality of
these systems is in contrast to the simpler task of extract-
ing pairs of interacting proteins, which have been covered
by other challenges, such as the BioCreative challenges
[29-32] and LLL05 [33]. The BioNLP STs have provided
standard evaluation benchmarks, including task defini-
tions, data sets for training and tools for evaluation. The
STs defined three subtasks: finding basic events with the

Table 1 Event types and their arguments in the ST corpus

Event type Primary arguments Secondary
arguments

Gene expression Theme (P)

Transcription Theme (P)

Protein Catabolism Theme (P)

Phosphorylation Theme (P) Site

Localization Theme (P) AtLoc, ToLoc

Binding Theme (P)+ Site+

Regulation Theme(P/Ev), Cause(P/Ev) Site, CSite

Positive regulation Theme(P/Ev), Cause(P/Ev) Site, CSite

Negative regulation Theme(P/Ev), Cause(P/Ev) Site, CSite

For each event, argument roles (Theme, Cause) and argument types (P:Protein,
Ev:Event) are shown Secondary arguments are optional, and they include AtLoc
(the source of an event), ToLoc (the goal or destination of an event), Site (specific
domains or regions corresponding to the theme of the event), CSite (specific
domains of regions corresponding to the cause of an event). Binding events can
take an arbitrary number of proteins as their theme, and Regulation events can
take events or proteins as their arguments.

core arguments Theme and Cause (Task 1), and attach-
ing to these basic events either secondary arguments, such
as location and site (Task 2), or negation and specula-
tion (Task 3). Most systems participated only in Task 1,
and fewer than 10 systems tackled Task 2 and/or Task 3
(presumably because of their complexities).
Event extraction systems participating in the BioNLP

STs have mostly employed pipeline-based approaches,
using machine learning methods based on parse results
[19,34-39]. In [34], a pipeline-based system was built to
extract events. The system firstly detected event trig-
gers and arguments sequentially, using multi-class sup-
port vector machines (SVM), and it subsequently con-
structed multi-argument events using hand-crafted rules.
It achieved the best performance in the BioNLP’09 ST.
The second best system [35] in the BioNLP’09 ST detected
triggers using dictionaries, and identified arguments
through graph kernel-based classification on trimmed
dependency graphs, which are built by removing irrele-
vant lexical information from dependency parse results
and adding conceptual class information to the results.
Such trimming is useful for detecting events, but it can
lead to loss of the information required to calculate meta-
knowledge, e.g., it prunes modal verbs such as may. A
dependency parsing approach to event extraction was
proposed in [39]. They detected triggers with a maxi-
mum entropy classifier (ME), and then found arguments
by applying syntactic parsing technologies (maximum-
spanning tree parsing and parse reranking) to pseudo
syntactic structures converted from event structures. In
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[19], the event extraction system EventMine was pro-
posed, which extended the approach introduced in [34]
by extending the features and utilising its classifier in the
multi-argument event detection phase.
Joint approaches have also been proposed, to avoid

the cascading accumulation of errors in pipeline-based
approaches, including Markov logic [40], joint infer-
ence models [41], search-based models [42], and dual
composition-based models [43]. In this latter approach,
the dual composition method was applied to solve trig-
ger and argument detection jointly and the resulting
system, incorporating the output of the dependency
parsing-based event extraction system [39] through stack-
ing, achieved the best performance in the BioNLP-ST’11
GENIA task.
Rule-based approaches have also been attempted

[36,44]. The latter system, which detects triggers using
dictionaries, and then extracts events by applying rules to
syntactic paths, ranked third in the BioNLP’09 ST.
Some event extraction systems have additionally been

applied to the entire set of PubMed abstracts [45,46]. The
results of event extraction have already been employed
in semantic search applications, such as MEDIE [47],
UKPMC Evidence Finder [48], applications that per-
form association mining for knowledge discovery, such as
FACTA+ [49] and pathway enrichment and maintenance
applications, such as PathText [3,50].

Meta-knowledge annotation and identification
Related work
The automatic assignment of various types of informa-
tion, fitting into the general definition of meta-knowledge,
to different parts of biomedical texts, is already a well-
studied problem. The most common types of systems
are those that carry out negation/speculation detection
[51-57] or perform classification according to rhetorical
function (e.g., Background,Method,Conclusions, etc.) [58-
64]. Such systems normally operate on continuous text
spans, with the sentence being the most common unit
of classification. Both rule-based and machine-learning
approaches have been attempted, usually using annotated
corpora as a starting point.
Concerning the identification of speculation at the sen-

tence level, a number of machine learning approaches
have been reported. In [51], an SVM-based text classifier
is used to select speculative sentences in abstracts, while
in [52,53], weakly supervised machine-learning methods
are used to perform simple classification of sentences
from full papers on the subject of Drosophila (fruit fly)
into speculative or non-speculative. In [53], improve-
ments to the ME classifier were achieved by reducing
the feature space size, using both automatic and manual
methods and by making use of external dictionaries of
hedge clues.

A large amount of work on the detection of nega-
tions has focussed on medical reports, for which both
rule-based and machine learning approaches have been
attempted. In terms of rule-based approaches, [54] pre-
sented a system that used regular expressions to find
phrases that indicate negation and to filter out sentences
containing phrases that falsely appear to indicate nega-
tion. The system described in [55] identified negative
words or phrases, which were used in conjunction with
a parser to identify the scope of the negations. Several
machine learning approaches (e.g., [56,57]) learned pat-
terns that indicate negative contexts.
To approach the problem of zone/rhetorical analy-

sis, systems that classify sentences in abstracts (e.g.,
[59,62,63]) have generally made use of simpler sets of fea-
tures than systems that operate on full papers. Various
learning algorithms have been used for abstract classifi-
cation, including SVMs [59], linear neural networks [59],
Naı̈ve Bayes [62] and conditional random fields (CRF)
[63]. All of these approaches use the words (and possibly
n-grams of words [63]) in the sentences as features, usu-
ally with stemming or lemmatisation. The systems also all
consider the position of the sentence within the abstract
to be important for accurate classification. In addition,
[62] uses feature weighting, while [63] uses contextual
features from surrounding sentences. The accurate auto-
matic categorisation of sentences demonstrated in [63]
has moreover been integrated with the MEDIE intelligent
search system [47].
Similar types of classifiers are used to determine the

categories of sentences or zones in full papers, e.g.,
Naı̈ve Bayes [58,61], SVMs [61], k-nearest nearest neigh-
bour and bigram model [60] and SVMs and CRFs [64].
Some features used are similar to those used in the clas-
sification of abstracts, such as words in the sentence,
position of the sentence in the abstract and contextual
features. However, it is usual that a more complex set
of features is employed for full papers. All the systems
use syntactic features, while [58] uses several types of
semantic features, including the semantic classes of pred-
icates and agents, together with the presence of cita-
tions. In [60], document structure features are used, based
on the the DocBook standard [65], while [64] employs
verb clusters, prediction history and the presence of
citations.
Although sentences constitute straightforward and eas-

ily identifiable units of text on which to perform anno-
tation and classification, there are a number of reasons
why they may be considered too granular to accurately
encode the different types of knowledge that are expressed
in biomedical text:

• Expressions of speculation and negations may not
apply to the complete sentence
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• In terms of rhetorical function / general information
content, there may be several types of information
expressed in the same sentence

Regarding rhetorical function/general information con-
tent, consider the following sentence:

(ii) Inhibition of the MAP kinase cascade with PD98059,
a specific inhibitor of MAPK kinase 1, may prevent
the rapid expression of the alpha2 integrin subunit.

This sentence contains at least three distinct “nuggets”
of information (which are somewhat similar to nano-
publication segments), as follows:

1. A description of an experimental method: Inhibition
of the MAP kinase cascade with PD98059.

2. A general fact: PD98059 is a specific inhibitor of
MAPK kinase 1.

3. A speculative analysis: Inhibition of the MAP kinase
may prevent the expression of the alpha2 integrin
subunit.

Thus, systems that are trained to allow only a single classi-
fication label per sentence can result in the loss of impor-
tant information. This problem is partly addressed in
[66,67], which report on annotation performed at a finer-
grained level, i.e., fragments, of which theremay be several
in a sentence. Whilst the annotation proposed in [67] uses
similar categories to those used for sentence-based rhetor-
ical analysis, the annotation scheme described in [66] is
somewhat different, in that it is rather biologically ori-
ented, and identifies 5 different types of information for
each fragment (Focus, Polarity, Certainty, Evidence, Direc-
tion/Trend). Subsequent work [14] reported on building
classifiers based on the annotation introduced in [66]
using SVM andME, achieving a performance in the range
of 64–97% F-scores, according to the annotation dimen-
sion. The features employed by their classifiers consist
of words, bigrams, trigrams, and syntactic chunks, the
latter of which were found to be important for the cor-
rect assignment of values in the Polarity and Trend (i.e.,
increase/decrease of a phenomenon or activity) dimen-
sions. The feature space is reduced through the use of
several types of processing of the input text, such as stem-
ming and stopword removal. However, the removal of
too much information was found to be detrimental to
the recognition of some dimensions. For example, tense
marking of verbs (which would be removed by stemming)
was found to be important for correct classification along
some dimensions. It was also found that certain words
that are normally classed as stopwords were useful for
classification along certain dimensions.
BioScope [68] is a further corpus in which annotations

generally consist of smaller units than complete sentences.

The corpus annotates the linguistic scopes of negative and
speculative keywords, which provides the means to train
systems that can determine not only which sentences con-
tain negations or speculations, but also the exact parts
of those sentences that have the negative or speculative
meaning. The release of this corpus, together with its
use in the CoNLL-2010 shared task (which consisted of
2 tasks, i.e., firstly, the detection of speculative keywords
and secondly, their scopes) [69], have helped to further
stimulate research into negation and hedge detection sys-
tems. For example, [70] developed a CRF-based classifier
to detect the scope of negations, which was trained on the
BioScope corpus, and used words and parts of speech as
features. The system was subsequently applied to 336 mil-
lion sentences to create a database of negated sentences
(BioNOT) [71].
Regarding the systems participating in the CoNLL-2010

shared task, a purely rule-based approach was used in
[72], in which lexical and syntactic patterns on constituent
parse trees and syntactic dependency relations were used
in conjunction with a dictionary of known hedge cues.
Hybrid approaches were used in [73,74], in whichmachine
learning classifiers were trained to detect hedge cues,
using a combination of syntactic and surface oriented fea-
tures, followed by the application of sets of hand-crafted
rules. In [74], the rules were further refined by a CRF
classifier. In [75,76], machine learning techniques were
applied to both hedge and scope detection, using vari-
ous combinations of dictionary-based, morphological and
syntactic features.
Moving from continuous text spans to event struc-

tures, we consider some of the systems that participated
in Task 3 of the BioNLP’09 ST, which concerned the
detection of negated and speculated events. Several of
the features used are the same as those employed by
systems operating on continuous text spans, such as
syntactic and token features, and dictionaries of nega-
tion and speculation clues. The approach described in
[44,77] adapted existing modules [78] developed using a
different corpus [52] that aim to find dependency rela-
tions between dictionaries of negation/speculation clues
and event triggers. In [79], a model is trained on Bio-
Scope, with additional classification used to discriminate
between ambiguous negation/speculation cues, accord-
ing to context. The system determined whether events
were negated/speculated according to whether event trig-
gers and/or their participants fell within the linguistic
scopes of the cues. This method was unsuccessful since,
as described below, their appears be an incompatibility
between linguistically-motivated scopes and biologically-
motivated events. In [37], the detection of negation and
speculation is carried out using a similar model to the
one used for event trigger detection, with the addition
of a dictionary of speculation-related words. The types



Miwa et al. BMC Bioinformatics 2012, 13:108 Page 7 of 24
http://www.biomedcentral.com/1471-2105/13/108

of features used include token features, sentence features,
dependency chains and dependency path n-grams.

Multi-dimensional meta-knowledge annotation at the event
level
While meta-knowledge annotation and identification at
the event level has been partially addressed by the GENIA
event corpus and the two BioNLP STs, a careful exam-
ination of the textual contexts of events reveals that a
much richer range of meta-knowledge can often be read-
ily identified, in addition to the basic positive/negative
and speculative/non-speculative distinctions. To illustrate
this, consider sentences (iii)-(viii) below, all of which con-
tain instances of the same biomedical event organised
around different forms of the verb activate, as follows:

• Type: Positive regulation, Trigger: activate, Theme:
nitrate reductase operon, Cause: narL gene product

(iii) It is known that the narL gene product activates
the nitrate reductase operon

(iv) We examined whether the narL gene product
activates the nitrate reductase operon

(v) The narL gene product did not activate the
nitrate reductase operon

(vi) These results suggest that the narL gene product
might be activated by the
nitrate reductase operon

(vii) The narL gene product partially activated the
nitrate reductase operon

(viii) Previous studies have shown that the
narL gene product activates the
nitrate reductase operon

An event extraction system should ideally extract the same
event structure as a result of analysing all of the above sen-
tences. However, the interpretation of the event is differ-
ent in each sentence, according to the sentential context.
The expressions in bold represent the clues that lead to
these different interpretations. In sentence (iii), the word
known shows that the event is a generally accepted fact,
while the word examined in sentence (iv) shows that the
event is under investigation and hence that the truth value
of the event is as yet unknown. In sentence (v), the word
not negates the event, meaning that it did not happen, and
in sentence (vi), the words suggest and might show that
there is speculation surrounding the event. In sentence
(vii), the word partially shows that the positive regulation
took place with a lesser intensity than would be expected
by default, while in sentence (viii), Previous studies shows
the event refers to previously published knowledge, and
hence it is not describing novel information.
Most of the different types of meta-knowledge identified

for the events in sentences (iii)–(viii) (with the excep-
tion of the partial intensity identified in sentence (vii))

are comparable, at least to some extent, to the meta-
knowledge types identified by the systems described in
the previous subsection. It may therefore be assumed that
meta-knowledge relevant to event interpretation could
be “inherited” from one or more of the existing systems
that produce sentence, segment or scope-based meta-
knowledge annotation. However, such a solution would be
problematic for a number of reasons. Firstly, although sen-
tences (iii)–(viii) are very simple sentences containing one
event, this will rarely be the case. Similarly to the fact that
sentences often contain multiple nuggets of information
(which was the argument for the segment-based scheme
introduced in [66]), most sentences will contain multi-
ple events, each of which could have a different meta-
knowledge interpretation. Thus, inheriting event meta-
knowledge from sentence-based classifications would not
be appropriate in most cases.
In terms of the feasibility of inheriting meta-knowledge

from smaller spans of text, it may sometimes be the case
that a particular textual fragment or negation/speculation
scope corresponds approximately to the span of text from
which an event trigger and its arguments are drawn. How-
ever, in other cases, this will not be so; in contrast to
scopes and segments, events do not constitute continuous
spans of text, meaning that event triggers and participants
may be drawn frommultiple fragments of a sentence. This
means that, even though the meta-knowledge dimensions
identified by the classifiers described in [14] are very sim-
ilar to the different types of meta-knowledge that can be
identified for the events in sentences (iii)–(viii), the lack
of a straightforward mapping between textual segments
and events makes it difficult to use such classifiers to
facilitate the interpretation of events. As was mentioned
above, a similar lack of compatibility can be observed
between linguistically-motivated negation and specula-
tion scopes, and biologically-motivated events that fall
(partially) within these scopes. An analysis of the differ-
ences between the scope-based annotation in BioScope
and events annotated as negated or speculated in the
original GENIA event annotation showed that only 51%
of events in the GENIA event corpus with event trig-
gers occurring within a speculated/negated scope were
actually annotated as speculated/negated themselves [80].
Thus, in terms of the automatic assignment of meta-

knowledge at the level of events, it is clear that separate
event-based classifiers must be constructed. The feasibil-
ity of training such classifiers can be greatly increased
through the use of a corpus in which meta-knowledge
also been assigned at the event level. Accordingly, our
EventMine-MK system is trained using such a corpus,
i.e., the GENIA-MK corpus, which includes detailed
event-level meta-knowledge information. Below, we pro-
vide brief details of this corpus and the scheme used to
annotate it.
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Event-basedmeta-knowledge annotation scheme
The meta-knowledge enrichment of the GENIA event
corpus, which is carried out in strict accordance with
a formally-defined annotation scheme [20], consists of
the classification of each event along five different meta-
knowledge dimensions, as well as the annotation of clue
expressions for each dimension (such as those embold-
ened in the example sentences (iii)–(viii)), whenever such
expressions are present in the sentence. The annotation
scheme used to create the GENIA-MK corpus thus aims
to provide a richer representation of meta-knowledge
than is annotated in the GENIA event corpus and the
two BioNLP STs. The scheme is very much inspired by
the one described in [66] and the encouraging results
obtained by a system trained on the resulting corpus
[14]. However, our scheme was tailored to the interpre-
tation of bio-events, through the examination of a large
number of events and their contexts when designing the
scheme. Unlike many of the other annotated corpora
introduced above, but in common with the BioScope cor-
pus, we annotate clue words/expressions that are used
to determine the specific values assigned to the different
meta-knowledge dimensions. Our decision to annotate
such clues was motivated by the fact that several of the
meta-knowledge assignment systems introduced above,
including those participating in the detection of negated
and speculated events in the BioNLP’09 ST, have used
dictionaries of clue words as features. Thus, it is to be
expected that clues will also be important in the assign-
ment of other types of meta-knowledge at the event level.
Clues for several of our meta-knowledge dimensions have
not previously been annotated in other corpora, nor have
clues for negation and speculation at the event level. We

thus considered it important to identify a set of event-
based clue expressions, which could subsequently be used
to compile dictionaries.
Figure 2 provides an overview of the meta-knowledge

annotation scheme. The boxes with the light grey (dotted)
background correspond to information that is common
to most bio-event annotation schemes (the participants
in the event, together with an indication of the class or
type of the event). The boxes with the dark grey (striped)
backgrounds correspond to meta-knowledge annotation
dimensions and their possible values, whilst the white box
shows the hyper-dimensions that can be derived by con-
sidering a combination of the annotated dimensions. High
levels of inter-annotator agreement were achieved [10]
between the two annotators involved (a biologist and a
linguist), falling in the range of 0.84–0.93 (Cohen’s kappa
[81]).
The five dimensions of meta-knowledge that make up

the scheme are described in more detail below: A default
value is specified for each dimension, which is assigned if
there is no explicit evidence for the assignment of one of
the other values.

• Knowledge Type (KT) refers to the general
information content of the event. Possible values are
Investigation (enquiries or investigations),
Observation (direct observations), Analysis
(inferences, interpretations, speculations or other
types of cognitive analysis), Fact (general facts and
well-established knowledge), Method (experimental
methods), and Other (default value; assigned to
events that either do not fit into one of the above
values, do not express complete information, or

Figure 2Meta-knowledge annotation scheme. ∗ denotes the default value for each dimension.
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whose KT is unclear or is assignable from the
context).

• Certainty Level (CL) identifies events for which
there is explicit indication that there is less than
complete confidence in the event. There are 3
possible values: L1 (low confidence or considerable
speculation, or events which occur infrequently), L2
(high, but not complete, confidence, or events that
occur frequently, but not all of the time) and L3
(default value; no explicit mention of either
uncertainty or that the event does not occur all of the
time).

• Polarity encodes the truth value of the event, with
two possible values, i.e., Positive (default value) and
Negative. A negated event is defined as one that
describes the absence or non-existence of an entity or
a process.

• Manner refers to the rate, level, strength or intensity
of the event, with three possible values, i.e., High,
Low and Neutral (default value).

• Source determines the origin of the knowledge
expressed by the event (i.e., the current paper or a
previous study), with its values Current (default
value) and Other.

Hyper-dimensions correspond to additional informa-
tion that can be inferred by considering combinations of
some of the explicitly annotated dimensions. We have
identified two such hyper-dimensions, each with binary
values (Yes or No): New Knowledge (inferred from KT,
Source and CL) and Hypothesis (inferred from KT and
CL).
The following two sentences serve to exemplify meta-

knowledge annotation of events:

(ix) Each of these domains possessed strong homology to
motifs previously found to bind the cellular factor
NF-kappa B. (PMID: 2148290 [82])

Sentence (ix) contains the following event.

• Type: Binding, Trigger: bind, Theme: motifs, Theme:
NF-kappa B

Here, Binding is a multi-participant binding event, and
it takes multiple Theme arguments. The meta-knowledge
annotation for the event is as follows:

• KT: Observation, clue: found
• CL: L3
• Polarity: Positive
• Manner: Neutral
• Source: Other, clue: previously

No clue expressions are annotated for CL, Polarity and
Manner, and they retain their default values, since there is

no evidence in the sentence that refers explicitly to these
meta-knowledge annotation dimensions.

(x) This Delta19 beta-catenin mutant localizes to the
nucleus because it may not be efficiently sequestered
in the cytoplasm. (PMID: 10330189 [83])

Sentence (x) contains the following event, among
others.

• Type: Localization, Trigger: sequestered, Theme:
Delta19

The meta-knowledge annotation for the event is as
follows:

• KT: Analysis, clue: may
• CL: L1, clue: may
• Polarity: Negation, clue: not
• Manner: Neutral
• Source: Current

In this example, the same clue expression, may, is used
for both the KT and CL dimensions. The word may pri-
marily denotes high speculation. However, speculation
inherently involves cognitive analysis, and since there is
no other Analysis clue expression present in the sentence,
may is also annotated as the KT clue.
The assignment of meta-knowledge at the event level

can be seen as complementary to zoning/rhetorical or
augmentation analysis methods, in that it can provide a
finer-grained analysis of the various types of information
that can occur within a particular text zone. The meth-
ods operating at different levels of text granularity could
be used simultaneously in text mining systems, e.g., the
identification of particular coarse-grained textual regions
could be used as an initial filter for locating events with
particular types of meta-knowledge. For instance, Con-
clusion sentences would normally be expected to contain
events that describe fairly definite analyses of events.

Methods
In this section, we begin by providing a brief overview
of EventMine [19], i.e., the existing event extraction sys-
tem that forms the basis of the integrated EventMine-MK
system. Subsequently, we describe the two stages of our
work in creating our new integrated system, which can
not only extract events but also assign meta-knowledge to
them. Firstly, we present our meta-knowledge assignment
system, which attaches meta-knowledge information to
pre-recognised events. We explain how the performance
of this system was intrinsically evaluated by applying it
to manually annotated events in the GENIA-MK cor-
pus. Secondly, we provide an account of how the meta-
knowledge assignment system was integrated with the
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existing EventMine system, to create the new EventMine-
MK system. Finally, we describe the EventMine-MK
UIMA/U-Compare component.

Event extraction system: EventMine
In this section, we provide an overview of the existing
EventMine [19] system, and describe some modifications
that have been made as part of the development of the
EventMine-MK system. When applied to the ST corpus
[24], EventMine outperformed other systems participat-
ing in the BioNLP’09 ST subtask Task 2 (i.e., the identifi-
cation of secondary arguments, such as location and site).
EventMine is a machine learning-based pipeline system
with three detection modules: event trigger/entity detec-
tion, event argument detection and multi-argument event
detection. Trigger/entity detection assigns an appropri-
ate trigger/entity category (e.g., Binding, Entity) to each
word that potentially constitutes the head word of an
event participant; argument detection finds semantic
pair-wise relations among event participants; and multi-
argument event detection merges several relations into
events. Figure 3 illustrates the flow of event extraction.
In each module, EventMine solves multi-class multi-label
classification problems using L2-regularised L2-loss SVM
(L2-SVM) with a one-vs-rest classification scheme [84].
That is, binary classifiers are built which distinguish one
of the labels from the rest. Classification of new instances
using the scheme for the multi-class multi-label clas-
sification is carried out by assigning to the instances
both the labels suggested by the classifiers and a label
with the highest classification score, the latter of which
is employed to ensure that all instances are assigned a
label.
EventMine is designed to extract event structures from

parser output. Any dependency parser could be substi-
tuted. However, in the system described in this paper,

we have used a combination of the Enju parser [86] and
the GDep parser [87], following [24]. In EventMine, five
base functions have already been implemented and pro-
vided to extract features representing a word or a pair of
words, together with their immediate textual contexts in
the sentence. These functions are as follows:

1. Token feature function – extracts the surface
representation of a word. The features extracted
consist of character types (e.g., number, symbol),
character n-grams (n=1; 2; 3; 4) (e.g., t, r, · · · , tr, ra,
· · · , tra, ran, · · · , tran, rans, · · · for transactivate),
base form of the word (e.g., be for were) and
part-of-speech (POS) of the word (e.g., VBD for
were).

2. Neighbouring word feature function – extracts all
2-step dependency paths from the target word, which
then are used to extract n-grams. For example, one of
the 2-step paths is were←PRD–unable←AMOD–
transactivate for transactivate in Figure 4. The
features used consist of: the features extracted by the
token feature function for each word, word and
dependency n-grams (n=2; 3; 4) (e.g., be←PRD–,
←PRD–unable←AMOD–), word n-grams (n=2; 3)
(e.g., be unable, unable transactivate, be unable
transactivate) and dependency n-grams (n=2) (e.g.,
←PRD–←AMOD–). In the n-grams, each word is
represented by its base form.

3. Word n-gram feature function – extracts word
n-grams (n=1; 2; 3; 4) within a window of three
words before or three words after the target word.
Each word is represented by its base form, POS and
its relative position (before or after the target word).
For example, the function extracts word n-grams
from unable to significantly transactivate the
c-sis/PDGF-B for transactivate in Figure 4.

Figure 3 EventMine event extraction pipeline. The diagram illustrates the pipeline model used by EventMine. The system takes as input texts in
which proteins/genes have already been identified. Trigger/entity detection classifies appropriate words in each sentence as triggers or entities,
argument detection finds semantic pair-wise relations among event participants and multi-argument event detection merges several relations into
events. This sentence is taken from PMID: 9341193 [85].
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Figure 4 Shortest dependency path example. This example illustrates the shortest dependency path between IEXC29S and transactivate on the
dependency tree produced by the GDep beta2 parser [87] (SUB: Subject, OBJ: Object, AMOD: Modifier of Adjective or Adverbal, VMOD: Modifier of
Verb, PRD: Predicative Complement). The shortest path is shown in bold.

4. Pair n-gram feature function – extracts word
n-grams (n=1; 2; 3; 4) within a window of three
words before the first word in the target pair and
three words after the last word. Each word is
represented by its base form, POS and its relative
position (before, between or after the target pair). For
example, for the trigger/argument pair transactivate
and c-sis/PDGF-B in Figure 4, the window from
which features are extracted is unable to significantly
transactivate the c-sis/PDGF-B promoter. The word
sequence unable to significantly is before the pair,
transactivate the c-sis/PDGF-B is between the pair,
and promoter is after the pair.

5. Shortest path feature function – extracts the shortest
dependency paths (e.g., [88]) between a word pair.
Figure 4 illustrates the shortest path between
IEXC29S and transactivate. Several types of
information are extracted to represent the shortest
paths, including their length (e.g., 3), word n-grams
(n=2; 3; 4), dependency n-grams (n=2; 3; 4),
consecutive word n-grams (n=1; 2; 3) representing
governor-dependent relationships (e.g.,
IEXC29S→be–be←unable), edge walks
(word-dependency-word) and their sub-structures
(e.g., IEXC29S–SUB→be, IEXC29S–SUB→), and
vertex walks (dependency-word-dependency) and
their sub-structures (e.g., –SUB→be←unable–,
–SUB→ ←unable–). Each word is represented by
its base form.

The three modules in EventMine are implemented by
using different combinations of these functions, details of
which are provided in [19].
As part of the construction of the EventMine-MK sys-

tem, we have incorporated twomodifications into original
EventMine system, in an attempt to improve the per-
formance of the event extraction functionality. Firstly, a
dictionary matching-based filter was incorporated into
the trigger/entity detection to reduce calculation time, by
ensuring that only words that match dictionary entries
are considered as trigger/entity candidates, instead of all
words in the text. The dictionary was created by firstly
extracting trigger and entity head words from the train-
ing data, and then expanding this initial list by using

two different resources to improve coverage. From the
UMLS SPECIALIST lexicon [89], we obtained synonyms
of words in the original list, as well as derivationally
related words (e.g., phosphorylate→phosphorylation).
UsingWordNet 3.0 [90], we added words that were linked
to those in the initial list via the hypernyms and similar to
relations.
Secondly, similarly to [91], we used feature hashing to

reduce memory usage. Feature hashing maps features into
a fixed space (we used 220 features), and does not require
string to integer mapping to maintain feature indices.
These modifications caused a very small decrease in

the performance of the system on the BioNLP’09 ST sub-
task Task 2 (around 0.1% F-score). However, they almost
halved the computation time and reduced the memory
usage by approximately 75%.

Meta-knowledge assignment system
As a starting point for the development of EventMine-
MK, we firstly constructed a system that assigns meta-
knowledge to pre-annotated events in the GENIA event
corpus, through training on the GENIA-MK corpus. This
system thus allows an intrinsic evaluation of the meta-
knowledge assignment task to be carried out, indepen-
dently of the event extraction task. The meta-knowledge
assignment problem is treated as a multi-class classifica-
tion problem for each dimension, i.e., KT, CL, Polarity,
Manner and Source, since each event is always assigned
a single value for each of the five dimensions. Although
the aim of the system described in [14] is somewhat sim-
ilar, in that multiple meta-knowledge values are assigned
to sentence fragments, that system used a multi-class,
multi-label classification approach, since their annotation
permitted multiple labels to be assigned to the same text
fragments for a given annotation dimension.
In order to perform classification in our meta-

knowledge assignment system, features are extracted
from the target event, as explained below, and they
are fed to an SVM classifier. In the same way as in the
event extraction pipeline, the type of classifier used is
L2-SVM with a one-vs-rest classification scheme. Two
classification configurations are employed. Firstly, biased
regularisation factors [84] are introduced for positive
examples, both to alleviate the problem in the one-vs-rest
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classification scheme that negative examples constitute a
sizable proportion of the training data examples, and also
to improve the stability in predicting infrequent meta-
knowledge values. Regularisation factors for positive
examples are assigned by calculating the ratio of negative
to positive examples for each class. The regularisation
factor for negative examples is set to 1. Secondly, type-
based feature normalisation is also employed to reduce
the effects of the different feature scales: the features in
each type are normalised using the L2 norm (Euclidean
length) to form a unit vector [92], and the whole feature
vector is then normalised using the L2 norm.
With regard to features, we employed two types: event

structure-based features and features for specific meta-
knowledge values.
Since we are dealing with meta-knowledge annotated at

the event level, some of the features should reflect event
structures. Accordingly, some of the features we use are
comparable to those used by the systems trained to extract
negated and speculated events from the BioNLP ST cor-
pora, e.g., [37,44,77]. We have used the same extraction
functions employed by EventMine to extract the following
three types of features:

1. Meta-knowledge clue features – represent the
shortest dependency paths between event
participants (trigger and arguments) and
meta-knowledge clue expressions. The features are
extracted using the shortest path feature function.
Here, in common with several other approaches, clue
expressions are extracted by matching with clue
word lists. The clue word lists are constructed by
selecting the most suitable clue words from all the
clue words in the BioScope corpus and the training
part of the GENIA-MK corpus. The selection is
performed using pointwise mutual information
(PMI) [93], which measures the level of association
between a clue word and its meta-knowledge values.
The threshold for PMI was set at -1.5 in order to
minimise the number of ambiguous clue words that
are extracted. The exact value of the threshold was
determined manually, based on the results of 10-fold
cross validation on the training data.

2. Trigger features – represent the contexts around the
event trigger, extracted using the neighbouring word
feature function.

3. Trigger-argument pair features – extracted using the
pair n-gram feature function.

A manual analysis of the meta-knowledge annotation
in the GENIA-MK corpus revealed that the presence
of specific types of clue words and phrases is not the
only important factor in determining the correct meta-
knowledge values to assign for certain dimensions. Based

on this analysis, together with an examination of features
used in related systems, we added an additional set of fea-
tures that attempt to capture other characteristics of the
text that are important in determining the correct meta-
knowledge values to assign. The additional features can be
split into two types.

1. Sentence features refer to both the absolute position
(e.g., second sentence, third sentence) and the
relative position (e.g., 0.25 (= 2/8) for the second of
eight sentences) in the abstract of the sentence that
includes the event trigger. The features are used
according to the observation that certain types of
meta-knowledge (particularly events belonging to
different values within the KT dimension) tend to
appear in fixed places in abstracts (e.g., events with
the KT type Fact or Observation often appear
towards the beginning of an abstract). Similar
features are used in nearly all systems that assign
rhetorical functions or sentence categories, e.g.,
[58,59,61-64], some of whose values are comparable
to those in our KT dimension.

2. A citation feature refers to the existence of citations.
Citations are extracted via a regular expression that
matches parentheses or brackets surrounding
numbers (e.g., [108] ) or sequences ending in 4 digits
(e.g., (..., 1998)). Clues for Other (Source dimension)
often constitute citations, and thus are not covered
by the clue dictionaries. Such features have also been
used in other systems that aim to identify parts of the
text where other work is referred to, e.g., [58,61,64].

Our system has two potential limitations in tackling the
problem, as follows: Firstly, the system takes into account
neither dependencies between meta-knowledge values in
different events, nor dependencies among the different
dimensions of the same event. However, we will show
that even by ignoring such dependencies, our system per-
forms well for most meta-knowledge dimension values.
Secondly, the current version of our system is also not able
to extract specific associations between meta-knowledge
dimension values (e.g.,Observation) and their clue expres-
sions (e.g., found). The ability to extract some associa-
tions may, however, be useful in certain situations, e.g., to
present meta-knowledge instances to users with textual
evidence highlighted. Accounting for these dependencies
and associations is left as future work.

Integrating the meta-knowledge assignment systemwith
EventMine
In order to perform the complete task of fully automatic
extraction of both events and their associated meta-
knowledge information, the meta-knowledge assignment
system described in the previous section has been
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integrated with EventMine, as a module in the event
extraction pipeline that is executed following the detec-
tion of multi-argument events. Themeta-knowledge clues
are recognised by treating them as new classes of words
to be identified and classified by the trigger/entity mod-
ule. Based on these recognised meta-knowledge clues,
features are extracted for use by the meta-knowledge
assignment system. Figure 5 illustrates the updated flow
of extraction.
In order to train the EventMine-MK system, we trans-

ferred the meta-knowledge annotation of the GENIA-MK
corpus to the training and development portion of the
ST corpus (henceforth referred to as “the ST-MK cor-
pus”), whose events consist largely of a modified subset
of the events that are present in the GENIA event cor-
pus. Given the current state-of-the-art in event extraction,
using the complete GENIA-MK corpus for training would
not allow a practical system to be produced, for a number
of reasons:

• The GENIA event corpus is annotated with nested,
fine-grained NEs, which belong to 47 different
classes. As an example of this nesting, the string
HIV-1 gene is annotated in the GENIA event corpus
as an entity of type DNA domain or region. However,
the nested string HIV-1 has additionally been
identified as an entity of type Virus. Although there
exist several systems that can extract nested NEs, this
is mostly done using a more coarse-grained set of NE
classes (e.g., [94]).

• The extraction of fine-grained nested NEs has been
attempted [95], which achieved a micro F-score
performance of 67.3%, using fragment matching. The
recognition performance amongst the different
classes ranged from 7.4% to 80.7%, which is
considerably lower than coarse-grained NE
extractors.

• Extraction of fine-grained events. When applied to
the GENIA event corpus (36 classes of events), the
best performance achieved by EventMine was 34%
F-score, given the fine-grained NEs annotations. In
comparison, the EventMine system achieved a
performance of greater than 55% F-score on the ST
corpus.

It was possible to transfer meta-knowledge annotations
from the GENIA-MK corpus to over 90% of events in the
ST corpus (9,494/10,410 events). The remaining events
in the ST corpus correspond to new annotations added
when the corpus was created, which were not based on
events in the GENIA event corpus. In order to prevent
errors in the transfer of meta-knowledge between the two
corpora, the annotation from the GENIA-MK corpus was
transferred to the ST corpus only when events in the two
corpora could be matched in terms of their event types,
event IDs and core argument text spans. The event IDs
were provided by the ST organisers, since the event IDs
in the ST corpus are different from the event IDs in the
GENIA event corpus. In order to verify the correctness
of the transfer process, we randomly examined 100 events

Figure 5 EventMine-MK event extraction pipeline. The diagram illustrates the pipeline model used by EventMine-MK. The meta-knowledge
assignment module is applied after event extraction. The functionality of the trigger/entity detector is different from the one shown in Figure 3, in
that meta-knowledge clues are now additionally detected by this module. The extracted clues are used as features by the newly-added
meta-knowledge extraction module.
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in the two corpora, and found that meta-knowledge had
been correctly transferred in all cases. The distribution
of event instances in the two corpora, in terms of the
meta-knowledge values assigned, is shown in Table 2.
In contrast to the GENIA event corpus, the ST corpus

contains only 9 event types and 1 NE category. More-
over, the ST corpus only contains around one third of the
events present in the GENIA event corpus. Hence, two
thirds of the meta-knowledge annotations in the GENIA-
MK corpus cannot be transferred to the ST-MK corpus.
In order for useful information contained in these unused
annotations from the GENIA-MK corpus not to be lost
in the model trained on the ST-MK corpus, the out-
put of the meta-knowledge assignment model that was
trained on the complete GENIA-MK corpus is used to
create additional features that are used in the assignment
of meta-knowledge by EventMine-MK. These additional
features include prediction scores that are made by the
GENIA-MK-trained meta-knowledge assignment model
for all meta-knowledge values.

Integration into U-Compare/UIMA
U-Compare [22] is an integrated text mining (TM) /
natural language processing (NLP) system based on the
Unstructured Information Management Architecture
(UIMA) framework. U-Compare provides a large number
of UIMA-compatible TM/NLP components, including

sentence splitters, NE recognisers, parsers, etc. Its graph-
ical user interface makes it easy for users to define, run
and visualise the results of workflows, including the abil-
ity to compare the results of using different components
for the same task. We constructed a UIMA component
for our EventMine-MK system (also available as a UIMA-
compatible web service), which takes as input a sentence
with NE annotation and outputs events contained within
the sentence, with meta-knowledge information assigned.
The component can be inserted into any UIMA-based
workflow (built using the U-Compare workflow interface
or other means), provided that previous components in
the workflow have split the input document into sentences
and identified appropriate NEs. The EventMine-MK
component is available as part of the current U-Compare
software download [96]. The component is named “Event-
Mine MetaKnowledge” and is classified under “Event
detectors” within the library of U-Compare components.

Results and discussion
Evaluation settings
The corpora (the GENIA-MK event corpus and the
ST corpus) were split into sentences using the GENIA
sentence splitter [97], and the resulting sentences were
processed using two parsers, i.e., the Enju 2.4.1 parser
with the GENIA model [86] and the GDep beta2 parser
[87]. EventMine-MK employed parse results produced by

Table 2 Distribution of instances by frequency and percentage (%) for eachmeta-knowledge value

Value
GENIA ST

ST(%)/GENIA(%)
frequency % frequency %

Investigation 1,914 5.3 520 5.5 1.03

Analysis 6,412 17.8 1,448 15.3 0.86

Observation 12,479 34.7 3,892 41.0 1.18

Fact 2,900 8.1 570 6.0 0.75

Method 973 2.7 40 0.4 0.16

Other 11,309 31.4 3,024 31.9 1.01

L3 33,090 91.9 8,921 94.0 1.02

L2 2,148 6.0 485 5.1 0.86

L1 749 2.1 88 0.9 0.45

Positive 33,779 93.9 8,939 94.2 1.00

Negative 2,208 6.1 555 5.8 0.95

High 1,381 3.8 466 4.9 1.28

Low 322 0.9 112 1.2 1.32

Neutral 34,284 95.3 8,916 93.9 0.99

Current 35,447 98.5 9,370 98.7 1.00

Other 540 1.5 124 1.3 0.87

Event Total 35,987 100.0 9,494 100.0 1.00

The last column shows the ratio of the percentage of events assigned the indicated value in the ST corpus to the percentage in the GENIA-MK corpus. Events that had
no triggers were ignored.
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both parsers, as in the original EventMine system [19].
EventMine follows most other event extraction systems
in employing syntactic parsers with biomedical models
[9,23]; the impact of such parsers on event extraction has
been analysed in [24,98].
Liblinear-java 1.7 [84] was employed as the classifica-

tion tool used to perform all types of classification in
EventMine-MK (relating to both event extraction and
meta-knowledge assignment), with the bias term set and
the regularisation value C set to 1 for negative examples.
For the purposes of training and testing the meta-

knowledge assignment system, the GENIA-MK corpus
was partitioned into a training set (800 abstracts) and a
test set (200 abstracts). The training set contains the same
abstracts as the ST training set, while 150 of the abstracts
in the GENIA test set were the same as those contained
in the development set of the ST. Each event was repre-
sented by an event trigger and core arguments (Theme
and Cause). The other arguments were ignored to sim-
plify the problem, since additional arguments relating to
locations, experimental conditions, etc., rarely have an
impact on the meta-knowledge values that are assigned
to events. If arguments consisted of multiple discontin-
uous spans, such spans were replaced with the smallest
continuous span that covered the discontinuous spans.
The representation of events assumed by our system
includes event triggers, in order to extract certain types
of features. Accordingly, the small number of events in
the GENIA-MK corpus that were not annotated with
explicit triggers was ignored (i.e., 673 out of 29,025 events
in the training set and 198 out of 7,833 events in the
test set). In terms of the ST corpus used to develop
EventMine-MK, the training and development portions
used in the ST were employed as the training and test sets,
respectively.
Evaluation of meta-knowledge assignment was per-

formed based on precision, recall, F-score and their
macro-averages or micro-averages for each category. The
assignment of the majority value for each annotation
dimension (Majority) was employed as our baseline.
Evaluation of negated and speculated event extraction

(Task 3) on the ST corpus was carried out according
to the ST settings. 800, 150 and 260 abstracts were
used as the training, development and test sets, respec-
tively. The ST evaluation server was used to perform
the evaluation, and the results are reported accord-
ing to Approximate Span Matching/Approximate Recur-
sive Matching evaluation criteria [9]. The evaluation
was performed by matching gold standard events and
their negation/speculation annotations, so that both event
extraction performance and negation/speculation detec-
tion performance are taken into account. Precision, recall
and F-score, together with their micro-averages, are used
to report the results.

An analysis was carried out of the differences between
meta-knowledge distribution in abstracts and full texts,
using the ST-MK corpus, which consists of abstracts, and
the full-text subset of BioNLP-ST’11 GENIA corpus. The
training and development sets in the ST-MK corpus were
used for training purposes, while the predictions on the
ST corpus test set and the full-text subset were used to
perform the analysis. The BioNLP-ST’11 GENIA evalua-
tion server was used to perform the evaluation of negated
and speculated event extraction on the full texts.

Meta-knowledge assignment to GENIA events
In order to construct themeta-knowledge assignment sys-
tem, we firstly used 10-fold cross validation to evaluate the
system using the training set of the GENIA-MK corpus,
using all the features described in the Meta-knowledge
assignment system section of Methods, together with the
use of both configuration settings, i.e., biased regularisa-
tion factors and type-based feature normalisation. Subse-
quently, in order to evaluate the contribution of different
features and settings, we trained various other versions of
the system, by disabling one feature or configuration type
at a time. The evaluation results obtained for all versions
of the system are summarised in Table 3.
With regard to the highest macro F-score, the best

setting differs, depending on the dimension under con-
sideration. Event structure-related features (Trigger and
Trigger-argument pair features) are seen to be crucial for
achieving a higher performance, since, for most dimen-
sions, the macro F-score drops considerably when these
features are disabled. For other features, their impact was
generally relatively small, and our experiments showed
that disabling some features could lead to positive as
well as negative impacts on the performance of the
system.
According to the results reported in Table 3, the use of

the meta-knowledge clue features generally has a positive
effect on the assignment of KT, CL and Polarity values.
However, the results also suggest that these features can
have a slightly negative impact on the assignment of Man-
ner and Source values. A possible reason for this is that
there are few commonly occurring clues for values of
these dimensions. For example, there are only 6 clues for
the Low value of the Manner dimension that occur 10 or
more times in the entire GENIA-MK corpus, compared to
88 clues for the Analysis value of the KT dimension that
occur 10 or more times. If a stable set of clues cannot be
identified in the training set, clues will be rarely matched
in the test set, and thus the existence of the clues may
confuse the classifier.
Sentence features are useful for KT, CL and Source, but

not for Polarity and Manner. This seems reasonable, since
there is often some kind of correlation between the posi-
tion of the sentence in the abstract and the possible values
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Table 3 Meta-knowledge assignment results using 10-fold cross validation on the GENIA-MK training set with various
settings

Meta-knowledge Disabled features Disabled learning settings

-Meta- -Trigger -Trigger- -Sentence -Citation -Type-based -Biased

Dimension Value knowledge features argument features features feature regularisation ALL Majority

clue features pair features normalisation factors

KT Investigation 71.9 61.2 71.7 70.8 71.6 73.2 70.3 71.8 0.0

Analysis 75.6 68.1 74.6 75.6 75.7 75.7 75.0 75.8 0.0

Observation 74.7 71.1 72.7 71.7 75.1 74.0 74.6 75.3 41.4

Fact 67.2 65.5 59.6 56.2 66.8 59.3 64.5 67.3 0.0

Method 61.9 56.0 52.8 61.6 61.7 55.3 52.9 62.0 0.0

Other 74.1 71.6 73.5 73.9 74.7 74.0 74.5 74.8 0.0

Macro 70.9 65.6 67.5 68.3 70.9 68.6 68.6 71.2 6.9

Accuracy 73.6 69.4 71.6 71.6 73.9 72.7 73.3 74.1 26.1

CL L3 97.4 97.6 97.7 97.8 97.8 97.8 98.0 97.8 94.5

L2 67.1 69.7 72.0 72.8 73.0 72.6 70.9 73.0 0.0

L1 76.4 78.7 76.0 78.1 78.7 75.9 78.7 78.6 0.0

Macro 80.3 82.0 81.9 82.9 83.2 82.1 82.5 83.1 31.5

Accuracy 95.0 95.4 95.5 95.8 95.8 95.7 96.2 95.8 89.6

Polarity Positive 97.7 97.3 97.1 97.6 97.5 97.4 98.1 97.5 95.1

Negative 65.9 65.0 64.1 67.8 67.3 64.2 63.6 67.3 0.0

Macro 81.8 81.2 80.6 82.7 82.4 80.8 80.9 82.4 47.5

Accuracy 95.8 95.0 94.7 95.5 95.4 95.1 96.4 95.4 90.7

Manner High 44.1 41.3 32.0 43.7 42.3 37.0 10.0 42.6 0.0

Low 17.6 13.5 14.7 18.4 17.1 13.3 0.8 17.1 0.0

Neutral 97.3 97.1 95.4 97.1 97.0 96.9 97.6 97.0 95.9

Macro 53.0 50.6 47.4 53.1 52.1 49.1 36.1 52.2 32.0

Accuracy 94.7 94.4 91.1 94.3 94.1 93.9 95.4 94.1 92.1

Source Current 99.1 98.6 98.5 99.1 98.9 99.1 99.3 98.9 98.6

Other 43.7 32.2 35.4 41.1 40.6 42.8 18.3 41.9 0.0

Macro 71.4 65.4 66.9 70.1 69.8 70.9 58.8 70.4 49.3

Accuracy 98.2 97.3 97.0 98.2 97.9 98.2 98.6 97.9 97.2

“-” means that the named feature type or configuration is disabled. The F-score for each meta-knowledge value, together with the macro-averaged F-score and
accuracy (= Micro-averaged F-score) for each dimension, are reported. The macro-averaged F-score is calculated by taking the average of the F-scores for each
different meta-knowledge value within the dimension.

of the KT, CL and Source dimensions. For example, in
terms of the KT attribute, events representing facts will
often occur towards the beginning of the abstract, while
events denoting analyses will often come after results have
been reported, i.e., towards the end of the abstract. The
same characteristics would thus apply to CL, since this
dimension is only applicable to events with a KT value of
Analysis. For the Source attribute, the non-default value
of Other is applicable when the event describes work that
was not carried out as part of the current study, which
is most likely to be mentioned at the beginning of the
abstract. The same position-based feature would not nor-
mally be applicable to Polarity, since events of any type

may be negated. Similarly, expressions of high or lowMan-
ner can apply to any event describing a biological process,
whether the event describes a fact, observation, analysis,
etc. As would be expected, citation features have the most
positive impact on the assignment of the Other value of
the Source dimension. For other dimensions, the effect of
this feature is negligible. The highest accuracy is produced
when biased regularisation factors are removed, with the
exception of the KT dimension. However, the same system
setting also produced the lowest macro F-score, by a con-
siderable margin, for the Manner and Source dimensions,
since the removal of biased regularisation means that
infrequent meta-knowledge values are not predicted well.
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Our results also show that it is safe to use all the features
and configurations for the prediction of all dimensions,
since the difference between the performance when using
the best setting, and the performance when using all fea-
tures and configurations, is less than 1%. According to
the results of these experiments, we decided to use the
system setting with all the features and configurations
enabled for all subsequently reported experiments, unless
otherwise stated. We do not use the best setting for each
dimension, since calculating and storing a different set
of features for each of the five dimensions would require
extra computational and spatial costs.
Following this initial set of experiments, we applied the

meta-knowledge assignment system to the test set of the
GENIA-MK corpus, and the results are summarised in
Table 4. The performance on the test set is generally better
than the baseline, except for a small degradation in F-score
for the Neutral value of the Manner dimension and the
micro-averaged F-score for the Manner dimension. The

performance is somewhat low for rarely appearing values,
including Low, High, Method and Other (Source). Preci-
sion and recall are similar to each other in all cases, except
for the Low value of the Manner dimension. This shows
that, for the most part, biased regularisation factors are
able to keep a balance between precision and recall, even
for infrequent meta-knowledge values.
The KT dimension has six values and, unlike other

dimensions, it has no single majority value to which most
events belong. The F-score for each value of this dimen-
sion is around 70%, except for the rare value Method,
demonstrating that there are no extremely easy or diffi-
cult cases in the KT dimension. The performance of the
CL dimension is lowest for the L2 value. This seems rea-
sonable, because the L2 value is the middle value of this
dimension, meaning that there is opportunity for such
events to be misclassified as either of the other values in
the dimension, i.e., L1 and L3. In contrast, the perfor-
mance of the system in predicting of the middle value

Table 4 Meta-knowledge assignment results on events in the GENIA-MK test set

Dimension Value Count R / P / F Majority (R / P / F)

KT Investigation 411 69.1 / 75.5 / 72.2 0.0 / 0.0 / 0.0

Analysis 1,340 70.4 / 78.4 / 74.2 0.0 / 0.0 / 0.0

Observation 2,593 72.1 / 72.3 / 72.2 100.0 / 34.0 / 50.7

Fact 673 63.7 / 68.0 / 65.8 0.0 / 0.0 / 0.0

Method 178 53.4 / 54.3 / 53.8 0.0 / 0.0 / 0.0

Other 2,440 77.0 / 70.6 / 73.6 0.0 / 0.0 / 0.0

Macro Average 7,635 67.6 / 70.0 / 68.6 16.7 / 5.7 / 8.5

Micro Average 7,635 72.0 / 72.0 / 72.0 34.0 / 34.0 / 34.0

CL L3 7,057 97.6 / 97.5 / 97.6 100 / 92.4 / 96.1

L2 420 68.6 / 64.6 / 66.5 0.0 / 0.0 / 0.0

L1 158 67.1 / 84.8 / 74.9 0.0 / 0.0 / 0.0

Macro Average 7,635 77.8 / 82.3 / 79.7 33.3 / 30.8 / 32.0

Micro Average 7,635 95.4 / 95.4 / 95.4 92.4 / 92.4 / 92.4

Polarity Positive 7,201 97.3 / 98.0 / 97.7 100 / 94.3 / 97.1

Negative 434 67.1 / 60.1 / 63.4 0.0 / 0.0 / 0.0

Macro Average 7,635 77.8 / 82.3 / 79.7 50.0 / 47.2 / 48.5

Micro Average 7,635 95.6 / 95.6 / 95.6 94.3 / 94.3 / 94.3

Manner High 275 49.8 / 46.4 / 48.1 0.0 / 0.0 / 0.0

Low 59 23.7 / 48.3 / 31.8 0.0 / 0.0 / 0.0

Neutral 7,301 97.7 / 97.6 / 97.6 100 / 95.6 / 97.8

Macro Average 7,635 57.1 / 64.1 / 59.2 33.3 / 31.9 / 32.6

Micro Average 7,635 95.4 / 95.4 / 95.4 95.6 / 95.6 / 95.6

Source Current 7,510 99.1 / 99.2 / 99.2 100 / 98.4 / 99.2

Other 125 53.6 / 50.0 / 51.7 0.0 / 0.0 / 0.0

Macro Average 7,635 76.4 / 74.6 / 75.5 50.0 / 49.2 / 49.6

Micro Average 7,635 98.4 / 98.4 / 98.4 98.4 / 98.4 / 98.4

Amajority class-based baseline is shown for reference. (R)ecall/(P)recision/(F)score are reported.
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in the Manner dimension, i.e., Neutral, is better than the
prediction of the other values in this dimension. This is
because the Neutral value is most frequently occurring
value in this dimension. However, ambiguity with other
values is still encountered during the the prediction of
the Neutral value, as illustrated by the fact that the per-
formance of the EventMine-MK system in predicting the
Neutral value is lower than the baseline, in terms of F-
score. The Negative value in the Polarity dimension and
the Other value in the Source dimension are both quite
rare values, which could be biased by their low frequen-
cies. The detection of theOther value is the more difficult,
since dictionary-based clue detection is more problem-
atic for this value than for the Negative value. In the next

section, however, we will show that machine learning-
based clue detection can improve the performance.

Extracting meta-knowledge enriched events
In Table 5, we summarise the results achieved by the
EventMine-MK system trained on the ST-MK corpus.
Since our aim here is not to evaluate the performance of
event extraction per se, but rather to provide an intrinsic
evaluation of the quality of the meta-knowledge assigned
to these events, evaluation was only performed on those
events whose complete structure (triggers and all argu-
ments) was correctly recognised by the system. Of the
1,687 events in the ST test set, 1,017 events were correctly
extracted by EventMine-MK. The results of two different

Table 5 Results of meta-knowledge assignment and event extraction for EventMine-MK trained on the ST-MK corpus

Dimension Value Count R / P / F +GENIA (R/P/F) Majority (R/P/F)

KT Investigation 38 76.3 / 67.4 / 71.6 68.4 / 65.0 / 66.7 0.0 / 0.0 / 0.0

Analysis 132 70.5 / 69.9 / 70.2 72.7 / 73.3 / 73.0 0.0 / 0.0 / 0.0

Observation 412 80.6 / 77.4 / 79.0 78.6 / 75.2 / 76.9 100.0 / 40.5 / 57.7

Fact 59 33.9 / 76.9 / 47.1 40.7 / 70.6 / 51.6 0.0 / 0.0 / 0.0

Method 8 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0

Other 368 77.4 / 73.8 / 75.6 76.6 / 74.0 / 75.3 0.0 / 0.0 / 0.0

Macro Average 1,017 56.5 / 60.9 / 57.3 56.2 / 59.7 / 57.3 16.7 / 6.8 / 9.6

Micro Average 1,017 74.6 / 74.6 / 74.6 73.9 / 73.9 / 73.9 40.5 / 40.5 / 40.5

CL L3 983 97.7 / 98.9 / 98.3 98.6 / 99.0 / 98.8 100.0 / 96.7 / 98.3

L2 30 73.3 / 48.9 / 58.7 76.7 / 62.2 / 68.7 0.0 / 0.0 / 0.0

L1 4 0.0 / 0.0 / 0.0 25.0 / 100.0 / 40.0 0.0 / 0.0 / 0.0

Macro Average 1,017 57.0 / 49.3 / 52.3 66.8 / 87.1 / 69.2 33.3 / 32.2 / 32.8

Micro Average 1,017 96.6 / 96.6 / 96.6 97.7 / 97.7 / 97.7 96.7 / 96.7 / 96.7

Polarity Positive 975 97.5 / 98.8 / 98.1 98.2 / 98.6 / 98.4 100.0 / 95.9 / 97.9

Negative 42 71.4 / 55.6 / 62.5 66.7 / 60.9 / 63.6 0.0 / 0.0 / 0.0

Macro Average 1,017 84.5 / 77.2 / 80.3 82.5 / 79.8 / 81.0 50.0 / 47.9 / 48.9

Micro Average 1,017 96.4 / 96.4 / 96.4 96.9 / 96.9 / 96.9 95.9 / 95.9 / 95.9

Manner High 56 78.6 / 63.8 / 70.4 76.8 / 65.2 / 70.5 0.0 / 0.0 / 0.0

Low 4 100.0 / 66.7 / 80.0 100.0 / 66.7 / 80.0 0.0 / 0.0 / 0.0

Neutral 957 97.2 / 98.7 / 97.9 97.4 / 98.6 / 98.0 100.0 / 94.1 / 97.0

Macro Average 1,017 91.9 / 76.4 / 82.8 91.4 / 76.8 / 82.8 33.3 / 31.4 / 32.3

Micro Average 1,017 96.2 / 96.2 / 96.2 96.3 / 96.3 / 96.3 94.1 / 94.1 / 94.1

Source Current 1,003 99.8 / 99.5 / 99.7 99.9 / 99.5 / 99.7 100.0 / 98.6 / 99.3

Other 14 64.3 / 81.8 / 72.0 64.3 / 90.0 / 75.0 0.0 / 0.0 / 0.0

Macro Average 1,017 82.1 / 90.7 / 85.9 82.1 / 94.8 / 87.4 50.0 / 49.3 / 49.7

Micro Average 1,017 99.3 / 99.3 / 99.3 99.4 / 99.4 / 99.4 98.6 / 98.6 / 98.6

Event (Task 1) 1,789 55.1 / 61.7 / 58.2

Event (Task 2) 1,795 54.1 / 60.8 / 57.2

Event (Task 3) 1,997 51.6 / 59.4 / 55.3

Meta-knowledge assignment performance is evaluated only on events correctly predicted by the system. Event extraction performance is evaluated using the ST
evaluation tools. A majority class-based baseline is shown for reference. +GENIA shows the results obtained when the outputs of the GENIA-trained meta-knowledge
assignment model are incorporated as additional features. (R)ecall/(P)recision/(F)score are reported.
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experiments are shown in Table 5. The first experiment
uses only features extracted from the ST-MK corpus (i.e.,
all features that were introduced in the Meta-knowledge
assignment system subsection of Methods), while the sec-
ond experiment (+GENIA) incorporates additional fea-
tures from themeta-knowledge assignmentmodel trained
on the GENIA-MK corpus, as was explained in the section
Integrating the meta-knowledge assignment system with
EventMine. We employed both configurations described
in the Meta-knowledge assignment system subsection of
Methods, i.e., biased regularisation factors and type-based
feature normalisation.
Examining the results of the first experiment, differ-

ences in performance can be observed between the sys-
tems trained on the GENIA-MK corpus (Table 4) and the
ST-MK corpus. For all dimensions, the micro-averaged
scores on the ST-MK corpus are a few points better
than those on the GENIA-MK corpus, but the differ-
ences in the macro-averaged scores are dependent on
the dimensions. Whilst these differences can partly be
attributed to the much smaller number of events in the
ST-MK corpus (and hence less training data), they can also
be attributed to differences in the distribution of meta-
knowledge values between the two corpora, as illustrated
in Table 2. In general, if meta-knowledge values appear
comparatively less frequently in the ST-MK corpus than
in the GENIA-MK corpus, then a degradation in perfor-
mance can be observed in EventMine-MK, compared to
the meta-knowledge assignment system trained on the
GENIA-MK corpus. This is most notably the case for L1
and Method, which appear less than half as frequently in
the ST-MK corpus as in the GENIA-MK corpus. Because
of this, EventMine-MK is unable to make any correct pre-
dictions for thesemeta-knowledge values. The same effect
can be seen, but to a much lesser extent, with the meta-
knowledge values Analysis, Fact, and L2, causing a drop in
the macro-averaged F-scores the KT and CL dimensions,
compared to the standalone meta-knowledge assignment
system trained on the GENIA-MK corpus. In contrast,
Observation, High and Low appeared more frequently as
meta-knowledge values in the ST-MK corpus than in the
GENIA-MK corpus, resulting in a large increase in ability
of EventMine-MK to predict these values correctly, com-
pared to the results shown in Table 4. Accordingly, the
macro-averaged F-score for Manner also improved. There
is little change in the performance of the prediction of
the Polarity values, i.e., Positive and Negative, compared
to Table 4, meaning that the macro-averaged F-score for
Polarity did not alter very much. An exception to the gen-
eral rule can be observed in the case of the Other value
of the Source dimension. Although this appeared less
often in the ST-MK corpus than in the GENIA-MK cor-
pus, performance was improved in EventMine-MK. This
was mainly due to the additional meta-knowledge clues

extracted by the trigger/entity detector, which proved use-
ful in comparison to the use of only dictionary match and
citation features (regular expressions). If the additional
meta-knowledge clues are not used, then performance
drops from 75.6% to 47.6% F-score. This improvement
in the prediction of the Other value resulted in a higher
macro-averaged F-score for Source, compared to the
results shown in Table 4.
According to the results of the second experiment, the

addition of features from the meta-knowledge assign-
ment model trained on the GENIA-MK corpus (+GENIA)
improves the performance of the EventMine-MK trained
on the ST-MK corpus, in terms of macro-averaged F-
score. Although the results for the Method value of the
KT dimension could not be improved, since this meta-
knowledge value appears extremely rarely in the ST-MK
corpus, performance on most other rare meta-knowledge
values was improved by the use of these additional fea-
tures. Direct application of the GENIA-trained meta-
knowledge assignment model to the ST test set was also
evaluated, but performance was reduced for all dimen-
sions. This degradation in performance is due to the
differences in the event types and in the distribution of
meta-knowledge types between the two corpora. How-
ever, our results demonstrate that, when used indirectly,
information from the GENIA-MK corpus can improve the
recognition of meta-knowledge for the ST events.
We performed an error analysis of the results produced

by the system that incorporates additional features from
the GENIA-trained system.
KT has the highest number of meta-knowledge val-

ues, some of which need to be disambiguated according
to their contexts. For most values of KT, some instances
were misclassified as Other, especially if clue expressions
were not present, since this is one of the most commonly
occurring values. Fact instances were often misclassified
as Analysis or Observation, since these two values appear
more frequently than Fact and are sometimes ambigu-
ous, in that they share a small number of clue expres-
sions. Errors in Method occurred because the clue words
were not detected, and furthermore, because the trigger
words (co)transfection, which are present in all incorrectly
classified Method events, occur far more frequently as
trigger expressions for Observation than for Method in
the training data sets. For CL, no instances were mis-
classified as L1. Three instances that should have been
assigned L1 were misclassified as L3, since L1 clue words
were not detected by the system. With regard to Polarity,
errors often occurred due to negation of event arguments
in coordination (e.g., but not TNF-alpha) and incorrect
detection of nested events. Negation often attaches to the
parent of the nested events, so if the nested structure
is wrongly detected, the Polarity value of the argument
event will be inverted. For example, if the gold-standard
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regulation event in the phrase no regulation of phospho-
rylation is annotated as negated, but the system only
detects the phosphorylation event and not the regulation
event, the phosphorylation event would be erroneously
detected as being negated. Errors in Manner occurred
between neighbouring meta-knowledge values (High and
Neutral, and Neutral and Low), for reasons similar to
the errors that occurred for the CL dimension. In terms
of Source, some Current events were wrongly detected
as Other when clue words for Other were detected in
the same sentence. Conversely, some Other events were
detected as Current when the clues were not detected by
the system.

Negated and speculated event extraction on the ST corpus
EventMine-MK was applied to the BioNLP’09 ST sub-
task (Task 3) of extracting events with associated negation
and speculation information. This task does not deal with
all the meta-knowledge dimensions that can be recog-
nised by our system, but applying our system to this
task is useful to allow comparison with other systems
that can extract negated and speculated events. Two dif-
ferent versions of EventMine-MK were trained, one on
the ST-MK corpus, and one on the original ST corpus,
which was annotated for both negation and speculation,
but not for negation and speculation clues. Using the
ST-MK corpus, EventMine-MK is able to construct a
meta-knowledge clue dictionary and a meta-knowledge
clue detector. For the EventMine-MK version trained on
the ST corpus, such functionality was not possible, given
the lack of negation and speculation clues in this cor-
pus. Table 6 shows the results and compares these with
the scores of the top performing systems that partici-
pated in Task 3 of the ST. Performance is reasonably low
for all the systems in this table, because the evaluation
settings take into account event extraction performance
as well as negation/speculation detection. As shown in
Table 6, our novel systems (EventMine-MK with or with-
out meta-knowledge clues) outperform the other systems
compared, in terms of both overall F-score, and in terms
of negation detection. In most cases, recall is also higher
than for the other systems. The meta-knowledge clue

annotation helps to improve performance, especially in
the detection of negated events, for which a considerable
improvement in performance can be observed over the
version of the system that does not use clues. Conversely,
for speculation, a small decrease in performance can
be observed when meta-knowledge clues are taken into
account. However, this decrease reinforces the analysis by
[44] that speculation annotations in the ST corpus do not
conform to the standardised notion of speculation, i.e.,
in contrast to the events enriched with meta-knowledge
annotation, events occurring with modal verbs (e.g.,may)
and epistemic adverbs (e.g., probably) are rarely annotated
as speculative in the ST corpus. According to this fea-
ture of the ST corpus, ignoring lexical clues increases the
F-score according to the ST evaluation settings.

Analysis of meta-knowledge distribution on abstracts and
full texts
To investigate the differences in the performance of our
system on abstracts and full texts, we applied the model
in Table 6 to the full-text subset of BioNLP-ST’11 GENIA
corpus. Table 7 shows the performance of negated and
speculated event extraction, using meta-knowledge clues,
on the full-text subset. This table shows that the perfor-
mance of EventMine-MK is almost consistent on both
abstracts (the ST corpus) and full texts, and that the
EventMine-MK system outperforms other systems on the
full texts. It should be noted that EventMine-MK system
used only the abstracts (the ST-MK corpus) for training,
unlike the other systems shown, which used both abstracts
and full texts for training purposes.
EventMine-MK was then trained on the ST-MK train-

ing and development sets, and applied to the ST test
set and the full-text subset of BioNLP-ST’11 GENIA
corpus, in order to compare the meta-knowledge dis-
tribution in abstracts and full texts. In this experiment,
additional features from the meta-knowledge assignment
model trained on the GENIA-MK corpus (as explained
earlier) were incorporated. Table 8 compares the distri-
butions of meta-knowledge assignments in the abstracts
and full texts. Whilst it should be noted that the results
obtained for full papers may not be completely accurate,

Table 6 Negated and speculated event extraction (Task 3) results on the ST corpus

Negation Speculation Total

EventMine-MK(+clues) 29.96 / 42.24 / 35.05 21.63 / 36.59 / 27.19 25.98 / 39.79 / 31.43

EventMine-MK 28.19 / 36.16 / 31.68 22.12 / 41.82 / 28.93 25.29 / 38.33 / 30.47

[37] 22.03 / 49.02 / 30.40 19.23 / 38.46 / 25.64 20.69 / 43.69 / 28.08

[77] 18.06 / 46.59 / 26.03 23.08 / 40.00 / 29.27 20.46 / 42.79 / 27.68

[44] 15.86 / 50.74 / 24.17 14.98 / 50.75 / 23.13 16.83 / 50.72 / 25.27

Results are shown both with the use of meta-knowledge clues (+clues) and without the use of clues. Recall / Precision / F-score are shown for each value, and the
highest scores are shown in bold.
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Table 7 Negated and speculated event extraction results on the full-text subset of the BioNLP-ST’11 GENIA corpus

Negation Speculation Total

EventMine-MK 34.85 / 40.00 / 37.25 19.00 / 38.00 / 25.33 25.30 / 39.00 / 30.69

[77] 21.21 / 38.24 / 27.29 17.00 / 34.69 / 22.82 18.67 / 36.14 / 24.63

[37] 25.76 / 48.28 / 33.59 15.00 / 23.08 / 18.18 19.28 / 30.85 / 23.73

EventMine-MK used the model with meta-knowledge clues in Table 6. Recall / Precision / F-score are shown for each value, and the highest scores are shown in bold.

given that full papers (whose characteristics are different
from abstracts) did not feature at all in the training data
for the system, some interesting trends can nevertheless
be observed. The statistics shown in Table 8 suggest that
full texts tend to include more events denoting previous
work (Other), more speculated events (L1 and L2), more
events denoting Low manner, and fewer events denoting
general facts (Fact) than abstracts. In order to confirm
these general trends, and to help to improve the accu-
racy of the automatic assignment of meta-knowledge to
events in full papers, we intend to manually enrich the full
papers released as part of the BioNLP-ST’11 GENIA cor-
pus with meta-knowledge as future work. The enriched
event annotations in the papers can subsequently be used
as training and test data to help to improve and evaluate
the performance of EventMine-MK on full papers.

Conclusions
We have presented a novel system that can extract
biomedical events from the literature and assign

meta-knowledge to them. The system was constructed
by integrating a new meta-knowledge assignment system
into a state-of-the-art event extraction system, Event-
Mine. The meta-knowledge assignment system was
firstly evaluated on the GENIA-MK corpus, on which it
performed well compared to the baseline, with a small
number of exceptions. This assignment system was then
integrated in EventMine. The augmented version of
EventMine, which we call EventMine-MK, was trained
on the ST-MK corpus, to which meta-knowledge annota-
tion had been transferred from the GENIA-MK corpus.
With the help of features from the model trained on the
GENIA-MK corpus, EventMine-MK was able to assign
meta-knowledge to the detected events with a good
degree of accuracy, comparable to the performance of
the meta-knowledge assignment system trained on the
GENIA-MK corpus. EventMine-MK was also able to out-
perform other state-of-the-art event extraction systems
in the task of detecting negated and speculated events.
EventMine-MK is available as a UIMA component, which

Table 8 Distribution of instances by frequency and percentage (%) for eachmeta-knowledge value

Value
ST FullText

FullText(%)/ST(%)
frequency % frequency %

Investigation 131 5.2 201 5.8 1.11

Analysis 312 12.4 477 13.7 1.10

Observation 1,154 45.8 1,465 42.0 0.92

Fact 89 3.5 94 2.7 0.76

Method 0 0.0 4 0.1 N/A

Other 832 33.0 1,244 35.7 1.08

L3 2,415 95.9 3,283 94.2 0.98

L2 87 3.5 162 4.6 1.35

L1 16 0.6 40 1.1 1.81

Positive 2,389 94.9 3,294 94.5 1.00

Negative 129 5.1 191 5.5 1.07

High 165 6.6 241 6.9 1.06

Low 18 0.7 39 1.1 1.57

Neutral 2,335 92.7 3,205 92.0 0.99

Current 2,487 98.8 3,415 98.0 0.99

Other 31 1.2 70 2.0 1.63

Event Total 2,518 100.0 3,485 1.0 100.00

Distributions of predictions on test set of the ST corpus and on the full-text subset of the BioNLP-ST’11 GENIA corpus are reported. EventMine-MK used the model
trained on the ST-MK corpus with the +GENIA setting, as in Table 5. The last column shows the ratio of the percentage in the full-text subset to the percentage in test
set of the ST corpus.
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is available within the U-Compare interoperable text
mining system.
As future work, we will apply EventMine-MK to the

entire PubMed abstract collection and thus be able to
extract events with meta-knowledge for use by com-
mon domain applications. We ran EventMine-MK with
no parallelisation on a cluster with 32 Intel(R) Xeon(R)
X7560 (2.27GHz) CPUs with 330 GB RAM using hyper-
threading. On average, it took 5.7 seconds to extract
events with meta-knowledge assignment from a single
abstract, of which an average of 2.1 seconds was used
for meta-knowledge assignment. It will take approxi-
mately 307 CPU days to apply meta-knowledge assign-
ment to the existing event extraction results for the entire
PubMed abstract collection, which includes about 12 mil-
lion abstracts and 9 million titles. Such meta-knowledge
can be used to rerank and/or restrict search results
in semantic search engines, e.g., the MEDIE intelligent
search system [47], and to construct pathways that use
only factual or trusted events. Crucially, such fine-grained
information about events is important for semantic pub-
lishing, e.g., SciVerse [99], and semantic web applications,
e.g., Open PHACTS [100]. Our approach creates living
texts, which can be viewed in a number of different ways
to extract assertions, hypotheses, contradictions, nega-
tions, etc. We also wish to improve the performance of
the meta-knowledge assignment, by finding a way to treat
the dependencies among values and relations between
meta-annotation clues and events.
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7. Özgür A, Vu T, Erkan G, Radev DR: Identifying gene-disease
associations using centrality on a literature mined
gene-interaction network. In ISMB; 2008:277–285.

8. Holden RJ, Mooney PA: The p53 paradox in the pathogenesis of
tumor progression.Med Hypotheses 1999, 52:483–485.

9. Kim JD, Ohta T, Pyysalo S, Kano Y, Tsujii J: Overview of BioNLP’09
shared task on event extraction. In Proceedings of the BioNLP 2009
Workshop Companion Volume for Shared Task. Boulder, CO: ACL; 2009:1–9.

10. Thompson P, Nawaz R, McNaught J, Ananiadou S: Enriching a
biomedical event corpus with meta-knowledge annotation. BMC
Bioinf 2011, 12:393.

11. Pyysalo S, Ginter F, Heimonen J, Bjorne J, Boberg J, Jarvinen J, Salakoski T:
BioInfer: A corpus for information extraction in the biomedical
domain. BMC Bioinf 2007, 8:50.

12. Kim JD, Ohta T, Tsujii J: Corpus annotation for mining biomedical
events from literature. BMC Bioinf 2008, 9:10.

13. Kim JD, Pyysalo S, Ohta T, Bossy R, Nguyen N, Tsujii J: Overview of
BioNLP Shared Task 2011. In Proceedings of BioNLP Shared Task 2011
Workshop. Portland, OR: ACL; 2011:1–6.

14. Shatkay H, Pan F, Rzhetsky A, Wilbur WJ:Multi-dimensional
classification of biomedical text: Toward automated, practical
provision of high-utility text to diverse users. Bioinformatics 2008,
24(18):2086–2093.

15. Nawaz R, Thompson P, Ananiadou S: Event Interpretation: A Step
towards Event-Centred Text Mining. In Proceedings of the 1st
AutomatedMotif Discovery in Cultural Heritage and Scientific
Communication Texts (AMICUS) Workshop; 2010.

16. de Waard A: From proteins to fairytales: directions in semantic
publishing. IEEE Intell Syst 2010, 25:83–88.

17. Mons B, Velterop J: Nano-Publication in the e-science era. In
International Semantic Web Conference; 2009.

18. Groth P, Gibson A, Velterop J: The anatomy of a nanopublication. Inf
Services Use 2010, 30:51–56.

19. MiwaM, Saetre R, Kim JD, Tsujii J: Event extractionwith complex event
classification using rich features. J Bioinf Comput Biol 2010, 8:131–146.

20. Nawaz R, Thompson P, McNaught J, Ananiadou S:Meta-Knowledge
annotation of bio-events. In Proceedings of the, Seventh conference on
International Language Resources and Evaluation (LREC’10). Edited by
Calzolari N, Choukri K, Maegaard B, Mariani J, Odijk J, Piperidis S, Rosner
M, Tapias D. Valletta, Malta: European Language Resources Association
(ELRA); 2010:2498–2507.

21. Nawaz R, Thompson P, Ananiadou S: Evaluating a meta-knowledge
annotation scheme for bio-events. In Proceedings of theWorkshop on
Negation and Speculation in Natural Language Processing. Uppsala,
Sweden: University of Antwerp; 2010:69–77.

22. Kano Y, Miwa M, Cohen KB, Hunter L, Ananiadou S, Tsujii J: U-Compare:
A modular NLP workflow construction and evaluation system. IBM J
RES DEV 2011, 55(3):11:1–11:10.

23. Kim JD, Wang Y, Takagi T, Yonezawa A: Overview of Genia Event Task
in BioNLP Shared Task 2011. In Proceedings of BioNLP Shared Task 2011
Workshop. Portland, Oregon, USA: ACL; 2011:7–15.



Miwa et al. BMC Bioinformatics 2012, 13:108 Page 23 of 24
http://www.biomedcentral.com/1471-2105/13/108

24. Miwa M, Pyysalo S, Hara T, Tsujii J: Evaluating dependency
representations for event extraction. In Proceedings of the 23rd
International Conference on Computational Linguistics. Beijing, China:
Coling 2010 Organizing Committee; 2010:779–787.

25. Riedel S, McClosky D, Surdeanu M, McCallum A, Manning CD:Model
combination for event extraction in BioNLP 2011. In Proceedings of
BioNLP Shared Task 2011Workshop. Portland, OR: ACL; 2011:51–55.

26. Thompson P, Iqbal S, McNaught J, Ananiadou S: Construction of an
annotated corpus to support biomedical information extraction.
BMC Bioinf 2009, 10:349.

27. Buyko E, Beisswanger E, Hahn U: The GeneReg Corpus for Gene
Expression Regulation Events – An Overview of the Corpus and its
In-Domain and Out-of-Domain Interoperability. In Proceedings of the
Seventh Conference on International Language Resources and Evaluation.
Edited by Calzolari N, Choukri K, Maegaard B, Mariani J, Odijk J, Piperidis
S, Rosner M, Tapias D. Valletta, Malta: European Language Resources
Association; 2010:2662–2666.

28. Wang X, McKendrick I, Barrett I, Dix I, French T, Tsujii J, Ananiadou S:
Automatic extraction of angiogenesis bio-process from text.
Bioinformatics 2011, 27(19):2730–2737.

29. Hirschman L, Yeh A, Blaschke C, Valencia A: Overview of BioCreAtIvE:
critical assessment of information extraction for biology. BMC Bioinf
2005, 6(Suppl 1):S1.

30. Krallinger M, Morgan A, Smith L, Leitner F, Tanabe L, Wilbur J, Hirschman
L, Valencia A: Evaluation of text-mining systems for biology:
overview of the second BioCreative community challenge. Genome
Biol 2008, 9(Suppl 2):S1.

31. Leitner F, Mardis S, Krallinger M, Cesareni G, Hirschman L, Valencia A: An
overview of BioCreative II.5. Comput Biol Bioinf, IEEE/ACM Trans on
2010, 7(3):385–399.

32. Arighi C, Lu Z, Krallinger M, Cohen K, Wilbur W, Valencia A, Hirschman L,
Wu C: Overview of the BioCreative III workshop. BMC Bioinformatics
2011, 12(Suppl 8):S1.

33. Nédellec C: Learning language in logic - genic interaction
extraction challenge. In Proceedings of the LLL’05Workshop; 2005.

34. Björne J, Heimonen J, Ginter F, Airola A, Pahikkala T, Salakoski T:
Extracting complex biological events with rich graph-based
feature sets. In Proceedings of the BioNLP 2009Workshop Companion
Volume for Shared Task. Boulder, CO: ACL; 2009:10–18.

35. Buyko E, Faessler E, Wermter J, Hahn U: Event extraction from trimmed
dependency graphs. In Proceedings of the BioNLP 2009Workshop
Companion Volume for Shared Task. Boulder, Colorado: ACL; 2009:
19–27.

36. Vlachos A: Two strong baselines for the BioNLP 2009 event
extraction task. In Proceedings of the 2010Workshop on Biomedical
Natural Language Processing. BioNLP ’10, Stroudsburg, PA: ACL; 2010:1–9.

37. Björne J, Salakoski T: Generalizing biomedical event extraction. In
Proceedings of BioNLP Shared Task 2011Workshop. Portland, OR: ACL;
2011:183–191.

38. Quirk C, Choudhury P, Gamon M, Vanderwende L:MSR-NLP Entry in
BioNLP Shared Task 2011. In Proceedings of BioNLP Shared Task 2011
Workshop. Portland, Oregon, USA: ACL; 2011:155–163.

39. McClosky D, Surdeanu M, Manning CD: Event extraction as
dependency parsing. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies.
Portland, OR: ACL; 2011.

40. Riedel S, Saetre R, Chun HW, Takagi T, Tsujii J: Bio-molecular event
extraction with Markov Logic. Comput Intell-US 2011. in press.

41. Poon H, Vanderwende L: Joint Inference for knowledge extraction
from biomedical literature. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for
Computational Linguistics. Los Angeles, CA: ACL; 2010:813–821.

42. Vlachos A, Craven M: Search-based structured prediction applied to
biomedical event extraction. In Proceedings of the 15th Conference on
Computational Natural Language Learning. Portland, OR: ACL; 2011.

43. Riedel S, McCallum A: Robust biomedical event Extraction with dual
decomposition andminimal domain adaptation. In Proceedings of
BioNLP Shared Task 2011Workshop. Portland, OR: ACL; 2011:46–50.

44. Kilicoglu H, Bergler S: Syntactic dependency based heuristics for
biological event extraction. In Proceedings of the BioNLP 2009Workshop
Companion Volume for Shared Task. Boulder, CO: ACL; 2009:119–127.

45. Björne J, Ginter F, Pyysalo S, Tsujii J, Salakoski T: Complex event
extraction at PubMed scale. Bioinformatics 2010, 26(12):i382–390.

46. Taura K, Matsuzaki T, Miwa M, Kamoshida Y, Yokoyama D, Dun N, Shibata
T, Jun CS, Tsujii J: Design and implementation of GXPMake – a
workflow system based onmake. In Proceedings of the 2010 IEEE Sixth
International Conference on e-Science. ESCIENCE ’10, Washington, DC:
IEEE Computer Society; 2010:214–221.

47. MEDIE - Semantic retrieval engine for MEDLINE. [http://www.
nactem.ac.uk/medie/].

48. UKPMC Evidence Finder. http://www.nactem.ac.uk/UKPMCWS/
EvidenceFinder.html.

49. Tsuruoka Y, Miwa M, Hamamoto K, Tsujii J, Ananiadou S: Discovering
and visualizing indirect associations between biomedical
concepts. Bioinformatics 2011, 27(13):i111–i119.

50. Kemper B, Matsuzaki T, Matsuoka Y, Tsuruoka Y, Kitano H, Ananiadou S,
Tsujii J: PathText: a text mining integrator for biological pathway
visualizations. Bioinformatics 2010, 26(12):i374–i381.

51. Light M, Qiu XY, Srinivasan P: The language of bioscience: facts,
speculations, and statements in between. In HLT-NAACL 2004
Workshop: BioLINK 2004, Linking Biological, Literature, Ontologies and
Databases. Edited by Hirschman L, Pustejovsky J. Boston, Massachusetts,
USA: ACL; 2004:17–24.

52. Medlock B, Briscoe T:Weakly supervised learning for hedge
classification in scientific literature. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics. Prague, Czech
Republic: ACL; 2007:992–999.

53. Szarvas G: Hedge classification in biomedical texts with a weakly
supervised selection of keywords. In Proceedings of ACL-08: HLT.
Columbus, Ohio: ACL; 2008:281–289.

54. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG: A
simple algorithm for identifying negated findings and diseases in
discharge summaries. J Biomed Inf 2001, 34(5):301–310.

55. Mutalik PG, Deshpande A, Nadkarni PM: Use of general-purpose
negation detection to augment concept indexing of medical
documents: a quantitative study using the UMLS. J AmMed Inf Assoc
2001, 8(6):598–609.

56. Auerbuch M, Karson TH, Ben-Ami B, Maimon O, Rokach L:
Context-sensitive medical information retrieval.Medinfo 2004, 11(Pt
1):282–286.

57. Rokach L, Romano R, Maimon O: Negation recognition in medical
narrative reports. Inf Retrieval 2008, 11(6):499–538.

58. Teufel S, Moens M: Summarizing scientific articles: experiments with
relevance and rhetorical status. Comput Linguist 2002, 28(4):409–445.

59. McKnight L, Srinivasan P: Categorization of sentence types in
medical Abstracts. In Proceedings of the 2003 Annual Symposium of the
AmericanMedical Informatics Association; 2003:440–444.

60. Langer H, Lungen H, Bayerl PS: Text type structure and logical
document structure. In ACL 2004Workshop on Discourse Annotation.
Edited by Webber B, Byron DK. Barcelona, Spain: ACL; 2004:49–56.

61. Mullen T, Mizuta Y, Collier N: A baseline feature set for learning
rhetorical zones using full articles in the biomedical domain.
SIGKDD Explor Newsl 2005, 7:52–58.

62. Ruch P, Boyer C, Chichester C, Tbahriti I, Geissbühler A, Fabry P, Gobeill J,
Pillet V, Rebholz-Schuhmann D, Lovis C, Veuthey AL: Using
argumentation to extract key sentences from biomedical
abstracts. Int J Med Inform 2007, 76(2-3):195–200.

63. Hirohata K, Okazaki N, Ananiadou S, Ishizuka M: Identifying sections in
scientific abstracts using conditional random fields. In Proceedings
of the 3rd International Joint Conference on Natural Language Processing
(IJCNLP 2008); 2008:381–388.

64. Liakata M, Saha S, Dobnik S, Batchelor C, Rebholz-Schuhmann D:
Automatic recognition of conceptualisation zones in scientific
articles and two life science applications. Bioinformatics 2012,
28(7):991–1000.

65. Walsh N, Muellner L: DocBook - the definitive guide; covers XML: the official
documentation for DocBook: O’Reilly; 1999.

66. Wilbur WJ, Rzhetsky A, Shatkay H: New directions in biomedical text
annotation: Definitions, guidelines and corpus construction. BMC
Bioinf 2006, 7:356.

67. de Waard A: The story of science: a syntagmatic/paradigmatic
analysis of scientific text. In Proceedings of the AMICUSWorkshop.

http://www.nactem.ac.uk/medie/
http://www.nactem.ac.uk/medie/
http://www.nactem.ac.uk/UKPMCWS/EvidenceFinder.html
http://www.nactem.ac.uk/UKPMCWS/EvidenceFinder.html


Miwa et al. BMC Bioinformatics 2012, 13:108 Page 24 of 24
http://www.biomedcentral.com/1471-2105/13/108

Vienna, Austria: University of Szeged, Faculty of Arts, Department of
Library and Human Information Science; 2010:36–41.

68. Vincze V, Szarvas G, Farkas R, Mora G, Csirik J: The BioScope corpus:
Biomedical texts annotated for uncertainty, negation and their
scopes. BMC Bioinf 2008, 9(Suppl 11):S9.
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