52 research outputs found

    Surgical treatment of prosthetic valve endocarditis

    Get PDF
    AbstractFrom 1975 through 1992, we reoperated on 146 patients for the treatment of prosthetic valve endocarditis. Prosthetic valve endocarditis was considered to be early (<1 year after operation) in 46 cases and active in 103 cases. The extent of the infection was prosthesis only in 66 patients, anulus in 46, and cardiac invasion in 34. Surgical techniques evolved in the direction of increasingly radical débridement of infected tissue and reconstruction with biologic materials. All patients were treated with prolonged postoperative antibiotic therapy. There were 19 (13%) in-hospital deaths. Univariate analyses demonstrated trends toward increasing risk for patients with active endocarditis and extension of infection beyond the prosthesis; however, the only variables with a significant (p < 0.05) association with increased in-hospital mortality confirmed with multivariate testing were impaired left ventricular function, preoperative heart block, coronary artery disease, and culture of organisms from the surgical specimen. During the study period, mortality decreased from 20% (1975 to 1984) to 10% (1984 to 1992). For hospital survivors the mean length of stay was 25 days. Follow-up (mean interval 62 months) documented a late survival of 82% at 5 postoperative years and 60% at 10 years. Older age was the only factor associated (p = 0.006) with late death. Nineteen patients needed at least one further operation; reoperation-free survival was 75% at 5 and 50% at 10 postoperative years. Fever in the immediate preoperative period was the only factor associated with decreased late reoperation-free survival (p = 0.032). Prosthetic valve endocarditis remains a serious complication of valve replacement, but the in-hospital mortality of reoperations for prosthetic valve endocarditis has declined. With extensive débridement of infected tissue and postoperative antibiotic therapy, the extent and activity of prosthetic valve endocarditis does not appear to have a major impact on late outcome, and the majority of patients with this complication survive for 10 years after the operation. (J THORAC CARDIOVASC SURG 1996;111:198-210

    Individual tree and stand-level carbon and nutrient contents across one rotation of loblolly pine plantations on a reclaimed surface mine

    Get PDF
    While reclaimed loblolly pine (Pinus taeda L.) plantations in east Texas, USA have demonstrated similar aboveground productivity levels relative to unmined forests, there is interest in assessing carbon (C) and nutrients in aboveground components of reclaimed trees. Numerous studies have previously documented aboveground biomass, C, and nutrient contents in loblolly pine plantations; however, similar data have not been collected on mined lands. We investigated C, N, P, K, Ca, and Mg aboveground contents for first-rotation loblolly pine growing on reclaimed mined lands in the Gulf Coastal Plain over a 32-year chronosequence and correlated elemental rates to stand age, stem growth, and similar data for unmined lands. At the individual tree level, we evaluated elemental contents in aboveground biomass components using tree size, age, and site index as predictor variables. At the stand-level, we then scaled individual tree C and nutrients and fit a model to determine the sensitivity of aboveground elemental contents to stand age and site index. Our data suggest that aboveground C and nutrients in loblolly pine on mined lands exceed or follow similar trends to data for unmined pine plantations derived from the literature. Diameter and height were the best predictors of individual tree stem C and nutrient contents (R ≥ 0.9473 and 0.9280, respectively) followed by stand age (R ≥ 0.8660). Foliage produced weaker relationships across all predictor variables compared to stem, though still significant (P ≤ 0.05). The model for estimating stand-level C and nutrients using stand age provided a good fit, indicating that contents aggrade over time predictably. Results of this study show successful modelling of reclaimed loblolly pine aboveground C and nutrients, and suggest elemental cycling is comparable to unmined lands, thus providing applicability of our model to related systems

    Estimating methane emissions in California's urban and rural regions using multitower observations

    Get PDF
    We present an analysis of methane (CH_4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH_4 emissions for spatial regions (0.3° pixels for major regions) by comparing measured CH_4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH_4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH_4 emissions are 2.42 ± 0.49 Tg CH_4/yr (at 95% confidence), higher (1.2–1.8 times) than the current CARB inventory (1.64 Tg CH_4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH_4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for ~58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH_4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH_4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32)

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    The Law and Economics of Liability Insurance: A Theoretical and Empirical Review

    Full text link

    Estimating methane emissions in California’s urban and rural regions using multi-tower observations:

    Get PDF
    We present an analysis of methane (CH4) emissions using atmospheric observations from 36 thirteen sites in California during June 2013 – May 2014. A hierarchical Bayesian inversion 37 method is used to estimate CH4 emissions for spatial regions (0.3° pixels for major regions) by 38 comparing measured CH4 mixing ratios with transport model (WRF-STILT) predictions based 39 on seasonally varying California-specific CH4 prior emission models. The transport model is 40 assessed using a combination of meteorological and carbon monoxide (CO) measurements 41 coupled with the gridded California Air Resources Board (CARB) carbon monoxide (CO) 42 emission inventory. Hierarchical Bayesian inversion suggests that state annual anthropogenic 43 CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 95% confidence, including transport bias 44 uncertainty), higher (1.2 - 1.8 times) than the CARB current inventory (1.64 Tg CH4/yr in 2013). 45 We note that the estimated CH4 emissions drop to 1.0 - 1.6 times the CARB inventory if we 46 correct for the 10% median CH4 emissions assuming the bias in CO analysis is applicable to 47 CH4. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and 48 South Coast Air Basins) account for ~58% and 26% of the total posterior emissions, 49 respectively. This study suggests that the livestock sector is likely the major contributor to the 50 state total CH4 emissions, in agreement with CARB’s inventory. Attribution to source sectors for 51 sub-regions of California using additional trace gas species would further improve the 52 quantification of California’s CH4 emissions and mitigation efforts towards the California Global 53 Warming Solutions Act of 2006 (AB-32)
    • …
    corecore