16 research outputs found

    Correction of the Iron Overload Defect in β-2-Microglobulin Knockout Mice by Lactoferrin Abolishes Their Increased Susceptibility to Tuberculosis

    Get PDF
    As a resident of early endosomal phagosomes, Mycobacterium tuberculosis is connected to the iron uptake system of the host macrophage. β-2-microglobulin (β2m) knockout (KO) mice are more susceptible to tuberculosis than wild-type mice, which is generally taken as a proof for the role of major histocompatibility complex class I (MHC-I)–restricted CD8 T cells in protection against M. tuberculosis. However, β2m associates with a number of MHC-I–like proteins, including HFE. This protein regulates transferrin receptor mediated iron uptake and mutations in its gene cause hereditary iron overload (hemochromatosis). Accordingly, β2m-deficient mice suffer from tissue iron overload. Here, we show that modulating the extracellular iron pool in β2m–KO mice by lactoferrin treatment significantly reduces the burden of M. tuberculosis to numbers comparable to those observed in MHC class I–KO mice. In parallel, the generation of nitric oxide impaired in β2m–KO mice was rescued. Conversely, iron overload in the immunocompetent host exacerbated disease. Consistent with this, iron deprivation in infected resting macrophages was detrimental for intracellular mycobacteria. Our data establish: (a) defective iron metabolism explains the increased susceptibility of β2m-KO mice over MHC-I–KO mice, and (b) iron overload represents an exacerbating cofactor for tuberculosis

    The Non-Enforcement of International Commercial Awards as a Violation of Bilateral Investment Treaties

    No full text

    Towards a Dynamic Resource-Based View: Insights from Austrian Capital and Entrepreneurship Theory

    No full text

    Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition

    No full text
    Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs
    corecore